
Programming Language Features
for Web Application Development

Ezra Cooper

Doctor of Philosophy

School of Informatics

University of Edinburgh

2009

Abstract

Web programming remains difficult, even with cutting-edge libraries, because

the execution model of the web environment is essentially different from the

classic models. Unlike a batch program which sits between input and output

streams, a web program sits between user activity in the browser and server-

side resources such as a database. Furthermore the use of URLs as durable

entry points to an application makes the environment fundamentally concurrent

and re-entrant, a challenge and opportunity for supporting web programmers.

This thesis makes four principal contributions to the technology for express-

ing web applications. First, it describes the features of Links, a new program-

ming language with a unified model of the web environment, encompassing client

and server. Among other things, the Links compiler can slice the program, gen-

erating JavaScript to run on the client and other code to run on the server, so

that they interact transparently. To allow programmers to control the location

of code, Links offers syntactic client and server annotations. The second contri-

bution is a formal semantics of these client/server annotations, in the form of an

“RPC calculus.” Along with the calculus is provided a compilation technique that

shows how these location annotations can be implemented in the web’s asymmet-

rical client/server setting, where the server acts only in response to the client’s

requests. The third contribution is a description of a language feature, ‘form-

lets,’ which is an abstraction of HTML forms; as an abstraction, it allows reusing

bundles of form elements, composing them hierarchically, and viewing their sub-

mitted data at an appropriate abstract type. And the fourth and final major

contribution shows how to integrate relational database query expressions into

a programming language while also extending those queries to allow nested data

structures and functional abstraction.

Contents

1 Introduction 1

2 Links Overview 4

2.1 Introduction . 4

2.2 Features . 8

2.3 Links by example . 11

2.4 Language Description . 29

2.5 The Web environment . 42

2.6 Links execution model . 45

2.7 Concurrency implementation . 51

2.8 Page flow definition . 55

2.9 Location-aware distributed computing 65

2.10 Composable form abstraction . 68

2.11 Language-integrated query . 68

2.12 Related work . 69

2.13 Conclusion . 73

3 The RPC Calculus 74

3.1 Introduction . 74

3.2 Defunctionalization . 77

3.3 The RPC Calculus . 88

3.4 Extension: Location Brackets . 114

3.5 Related Work . 115

1

3.6 Conclusions and Future Work . 118

4 Formlets 119

4.1 Introduction . 119

4.2 Idioms . 122

4.3 Syntax . 127

4.4 Related Work . 129

4.5 Conclusion . 130

5 SQL Compilation 132

5.1 Introduction . 132

5.2 The language . 138

5.3 Making Queries . 144

5.4 Correctness . 149

5.5 Adding Recursion . 183

5.6 Adding the length operator . 184

5.7 Language-integrated query systems 185

5.8 History . 187

6 Future Work 189

7 Conclusion 194

Declaration

I declare that this thesis was composed by myself, that I was part of a research

group and that I personally made a substantial contribution to the work, as in-

dicated in each chapter, and that this work has not been submitted for any other

degree or professional qualification.

Ezra Cooper

3

Acknowledgements

This thesis exists only because of the people who have had an unreasonable faith in

me and so gave me the bedrock and the freedom to complete it. Among them are my

teachers: George Wolfe, who introduced me to the joy of science and its method; Rick

Hendricks, whose brave, insouciant approach armored me; Framji Minwalla, who taught

me that “you never really understand something until you articulate your view and are

told that you’re wrong”; Terry Osborne, who taught me to write in the large; Bob Gray,

my undergraduate thesis advisor, who had total confidence in me and so improved my

technical writing; Prasad Jayanti, who taught computer science in the most memorable

and infectious way and kindled my adult desire to study it formally. On the job, Krishanu

Seal was a perfect Socratic partner and restored my faith in intellectual curiosity.

Jeremy Yallop, my partner in Links crime, with his humor and curiosity, helped

me land safely in a foreign country and survive the new academic life. Sam Lindley

was a great friend and sounding-board who also went the extra mile to make life in

this new land rather enjoyable. Matija Pretnar energetically explored it with me and

was a very patient friend, too. Ian Stark, as second supervisor, advised me kindly and

enthusiastically. Don Sannella gave very wise counsel when I needed it most. Phil

Wadler, my supervisor, started it all by taking a great chance on me, for which I am

very grateful, and by watching him I have learned many valuable things about writing,

presenting, and constructing technical work.

Most unreasonably faithful of all are my father, Robert Newton Cooper, and my

mother, MaryDaniel Casey Cooper, who have put up with all the worst things I’ve ever

done and trusted in me to do some good things as well. Most critically, they taught me

that careful observation and persistent dedication, combined with an open, adventurous

mind, would yield satisfying creative results.

0

Chapter 1

Introduction

Web programming, even with the best libraries, remains difficult. Not only

do programmers need to contend with fast-changing and mutually-incompatible

browsers, they need a menagerie of different languages to create a single appli-

cation; and, as this thesis argues, the execution model of the web environment is

essentially different from the classic models it is displacing.

Consider that typical applications demand software running on the web server

as well as in the browser—thus we cannot easily apply the now-archaic batch

model of programming, where a program runs on a single machine, transducing

input into output. Instead, we have a heterogeneous distributed environment,

where programs run on different platforms, on different machines, much of their

activity is in communication, and the communication happens over a sometimes-

awkward substrate, the HTTP protocol. In such an environment, it remains a

significant challenge to establish communication between the principals and en-

sure that they are interacting as desired. The challenge here is more specialized

than the general challenge of concurrent distributed computing, because the re-

lationship among the principals (server and browser) is very constrained, and

thus it may be more tractable.

Another special feature of the web environment is the ubiquitous use of a

separate database management system. This tradition arose both as a way to

achieve data synchronization among the many servers providing a web applica-

1

tion and also as a means of persisting data. Yet communication between the core

program code and the database is normally through an interface dictated by the

latter, and so fits uncomfortably with other activities of the core code. As such,

web development would be made much easier by an integrated interface to the

database.

Further, the web environment presents a new user-interaction model, distinct

from the desktop GUI model and distinct from the batch- or line-oriented models

of yore. Relevant elements of this model include the web’s notion of navigation

(including the forward and back buttons, bookmarking, and URLs as naviga-

tional atoms), and the document object model with its associated event model.

Even HTML forms are a specialized piece of this interaction model. Working

with these particular elements begs for good abstraction to wrangle them.

To ameliorate the difficulty of web programming, engineers are building li-

braries and frameworks that incorporate techniques and protocols for working

in the web environment. There are, for example, many JavaScript libraries to

ease browser programming; and there are many server-side web frameworks to

ease that part of the job. Yet all of these packages are limited by the artificial

partition of web environment into client and server. The programmer is left to

stitch together the two worlds into one working application. This often involves

carefully structuring a program to expose internal facilities as interfaces made

available across the network. It can also require working around differences in

semantics between languages, which give rise to subtle bugs.

This thesis aims to contribute across the full length of a web app, stretch-

ing from front end to back end. It describes (Chapter 2) Links, a programming

language with a unified model of the web environment; it gives (Chapter 4) a

composable abstraction for defining HTML forms; it defines (Chapter 3) a lan-

guage feature for moving execution smoothly between client and server, even

over the asymmetrical substrate of typical HTTP; and it shows (Chapter 5) how

to express relational database queries with the increased flexibility of a general-

purpose, higher-order programming language.

2

My colleague Jeremy Yallop often criticizes the so-called “design patterns”

movement in software engineering. As he tells it, we wouldn’t need to write

down our patterns if we could express them directly in code. This observation

retrospectively forms a starting point for the present work: Considering that

web programming is full of folklore techniques and “patterns,” why not build a

language that supports defining these patterns as code? The Links language

became an experiment in doing just that.

Contributions The key contributions of this thesis are:

• A description of the features and implementation of the Links program-

ming language, with novel features for concurrent client-server comput-

ing, web application page flow, form composition, and language-integrated

database queries,

• A formalization of a technique for executing location-aware programs on

an asymmetrical client-server substrate, combining continuation-passing

style, trampolined style, and defunctionalization,

• An application of the functional-programming interface called idioms to

the problem of form composition for user interfaces,

• A type-and-effect system for an impure variant of the Nested Relational

Calculus, which allows detecting the translatability of NRC expressions to

SQL, along with such a translation.

3

Chapter 2

Links Overview

(This chapter is a greatly revised version of Cooper et al. [2006], joint work with Sam

Lindley, Philip Wadler, and Jeremy Yallop.)

Here we overview Links, a programming language designed to ease web devel-

opment.

2.1 Introduction

A typical web system is composed of many tiers, or sets of machines which play a

certain role and have a certain architecture (see Figure 2.1). For example, there

may be a user-interaction tier, comprising the web browser(s), a so-called appli-

cation tier, which runs the core logic on many machines, and a back-end tier,

comprising possibly many services, running on many machines; the back end

typically includes persistent data in the form of a relational database (big sys-

tems also use caches and application-specific back-end services, although these

Figure 2.1: Three-tier model of web programming

4

Figure 2.2: The Links model: Unified web programming

are beyond the scope of this thesis).

To use all these tiers, the programmer must master a menagerie of languages:

the core code would usually be written in a general-purpose language such as

Java, Perl, PHP, or Python, the user interaction given in a mixture of HTML

and JavaScript, and the relational database queried using SQL. There is no easy

way to ensure that interfaces between the tiers match up—that an HTML form

or an SQL query produces the sort of data that the core logic expects. And the

problem is exacerbated because code for the browser or database is often partly

generated at runtime, making web applications particularly difficult to debug.

This difficulty is called the impedance mismatch in web systems.

The Links language reduces the impedance mismatch by providing a lan-

guage whose execution model encompasses all three tiers (Figure 2.2). In the

current version, Links translates into JavaScript to run on the browser and SQL

to run on the database; core logic is either interpreted or, in an experimental ver-

sion, compiled via OCaml. All this code is generated robustly by the Links com-

piler, rather than by ad-hoc techniques such as string interpolation, which are

often used in the wild. The automatic code generation reduces the opportunity

for programmer error, and supports type-checking the communication between

the tiers, which is conventionally not automatically checked at all.

5

Program
outputinput

Filesystem

reads, writes

Figure 2.3: Conventional batch model of programming

Application
Logic

user events

Filesystem
reads, writesEvent

Loop

windowing
commands

User

Figure 2.4: Event-loop model of programming

The tiered model of Figure 2.1 is markedly different from the very traditional

batch model of programming (Figure 2.3), where a program simply consumes in-

put and produces output, and from the event-loop model (Figure 2.4), where a

program responds to events and uses windowing commands to display informa-

tion to the user.)

Links does not completely free the programmer from thinking about the tier

structure; it only makes it easier to manage the tiers’ interaction. For example,

the programmer may still need to consider whether a given bit of code should

run in the client or the server—especially when security is an issue—and it

might even be necessary to tweak code for different locations to achieve opti-

mal performance. But in Links it is a simple matter of annotation to retarget

code between the tiers when necessary. In terms of the cognitive dimensions of

6

notations [Green, 1989], this feature offers “low viscosity.”

There are aspects of Links syntax that are clearly adapted for client, server,

or database, and they have their distinct flavors, but this does not mean that we

have fallen back to three unrelated languages. On the contrary, Links still uni-

fies the programming process—in particular, it type-checks the entire program

at once, and it offers common syntax for basic operations (arithmetic, string pro-

cessing, and so on). Thus the semantic impedance mismatch is reduced, even

though there is a superficial heterogeneity of syntax. And this heterogeneity has

a benefit: each syntactic area has some similarity with an existing language for

that domain; for example, (X)HTML, which is a familiar language for specifying

web documents. In brief, Links is a unified, heteroglot language for web develop-

ment.

All the features of Links work on top of existing web infrastructure. The

Links compiler generates code for existing client-side and backend technologies

(JavaScript for the browser and SQL for the database), so for example it is not

necessary to download a browser plugin to use a Links application. For the

middle-tier server logic, Links currently runs under the CGI interface—thus it

fits easily with existing HTTP servers. The interpreter could be adapted to use

other server interfaces, such as FastCGI, NSAPI, or to run as an Apache module,

without disturbing its essential architecture.

As well as reducing the impedance mismatch between tiers, Links offers spe-

cial abstractions for web-specific programming tasks, such as specifying page

relationships, and constructing and processing forms.

Because scalability is essential for web programs, Links is designed to scale.

Many web frameworks that incorporate powerful features, such as web continu-

ations (see Sec. 2.8), do so at the cost of using unbounded, long-lived, server-side

storage. Web engineers are highly conscious of this issue, and will not deploy

systems whose persistent-resource consumption depends directly on the volume

of individual user actions. Such a mistake can bring down a large site, or prevent

a small one from reaching “web scale.” Links proves that it is possible to imple-

ment advanced web-language features scalably, using no server-side resources to

7

track computations that are executing on the clients.

Chapter Road Map

Links is introduced in Section 2.2 through a brief list of distinguishing features

and further in Section 2.3 through three fully-worked examples. Section 2.4 de-

scribes the syntax and special features of Links in detail. Section 2.5 gives back-

ground on the environment in which web programs run. The next six sections

each cover a special aspect of Links. Section 2.6 describes Links’ unusual exe-

cution model, including the client-server relationship, threading model, and re-

entrancy (part of this model is formalized in Chapter 3). Section 2.7 describes the

implementation of concurrency. Section 2.8 shows how Links supports defining

an application’s page relationships, as experienced by the user, including some

useful control abstractions. Section 2.9 explains the behavior and implementa-

tion of Links’ location-aware distribution annotations. Section 2.10 notes the

features for composable forms (formalized in Chapter 4). Section 2.11 overviews

the language-integrated query features (formalized in Chapter 5). Section 2.12

describes related work, and Section 2.13 concludes the overview.

2.2 Features

Web execution model Unlike the batch and event-loop execution models de-

scribed ealier, the web model is fundamentally re-entrant: A user can multiply

the number of windows she has open on a site, explore her history freely, and

save a URL in a durable medium.

Each of these branching paths contains references into the code (URLs) which

can be triggered at any time. This fact gives rise to a common form of bug, docu-

mented for example by Graunke et al. [2003], where clicking to purchase an item

displayed in one window can have the effect of purchasing an item displayed in

a different window. Many websites still shout to users “Do not use the back but-

ton,” thereby asking their users to cover for problems in the application. Avoid-

8

ing this problem using traditional languages and frameworks requires explicitly

managing the data in the multiple exploration paths that the back button gives

rise to.

What’s more, the program has to re-establish context upon each entrance,

usually by manual coding. If a user enters a shipping address on one page and

a billing address on the next, the coder needs to manually store the shipping ad-

dress somewhere and fetch it again later. Recent research has applied the notion

of a continuation from functional programming to ease this, allowing the pro-

grammer to code such a page-flow in direct style, as if the whole interaction were

a sequential program, without losing the control and data context. A number

of researchers have made use of the concept, including Queinnec [2000], Gra-

ham [2001a] (in a commercial system used by Yahoo for building web stores),

Graunke et al. [2001a,b], Matthews et al. [2004], and Thiemann [2002]. Links,

too, uses continuations to ease working in the web execution model, as described

in Section 2.8.

Client-server calls Links is distributed and location-aware, meaning that a

given expression can potentially take place at any of the locations (client or

server) in the low-level execution model, but the programmer can explicitly locate

an expression if necessary—due to reasons of efficiency or security, for example.

For the implementation, this requires performing remote-procedure calls (RPC)

symmetrically (i.e. in either direction) over the asymmetrical substrate of HTTP.

DOM interface Links presents information to the user through the Document

Object Model (DOM) [World Wide Web Consortium, 2004] and web pages ex-

pressed in (X)HTML. Besides defining the page structure itself, the DOM inter-

face gives a way to update documents and to listen for user-interaction events,

such as mouse and keyboard actions [World Wide Web Consortium, 2003b].

HTML web pages act as a convenient notation to specify DOM structures and

associated event listeners, so its syntax is embedded in Links.

9

Concurrency Links supports concurrent programming under a message-passing

model: The only facility for thread interaction is message-passing. There is no

shared memory between threads, nor indeed any directly mutable cells to make

shared memory meaningful for concurrency purposes. This style of programming

was pioneered in the languages Erlang [Armstrong et al., 1993] and Mozart [van

Roy, 2006].

Message-passing concurrency is the only general-purpose form of state in

Links, a mostly pure language. State arises from concurrency because each pro-

cess has a state, including a program counter, local variables and a message

queue. In fact, through message-passing we can write a process that simulates a

mutable cell.

Concurrency is the only general form of state, but there are other stateful

aspects of the system, notably the DOM. And since the DOM and the user inter-

face it represents are fundamentally stateful, wrangling these is greatly aided

by having some usable form of state in the language. We might imagine using

the DOM itself as a mechanism, but this is unwieldy, and we prefer to have a

language-oriented solution to the need for state; concurrency is the Links solu-

tion.

Besides that, message-passing concurrency enables a fairly natural, func-

tional style for writing model-view-controller user-interfaces: in this style each

UI component is managed by a “model” process which receives model-update

messages and modifies the DOM accordingly; examples are given in Section 2.3.

Language-integrated query Database queries can be written completely in

Links’ native comprehension syntax and translated by the system into SQL. A

syntactic annotation allows the programmer to specify that a given expression

must be SQL-translatable (if it is not, an error is produced). This entails de-

termining whether the expression could take any side-effects at runtime, or call

non-SQL-friendly primitives. However, the permissible query expressions are

more flexible than SQL, and may even be higher-order, that is, they can use first-

class functions. This allows query “fragments” to be given as code elsewhere in

10

the program and passed into a query expression, thus assembling a query dy-

namically at runtime, and with the same type safety as any Links code.

2.3 Links by example

This section introduces Links by a series of examples. The examples and their

source code are available at

http://homepages.inf.ed.ac.uk/s0567141/examples/

The first example (Links Dictionary) shows the language basics, and the next

two demonstrate special features.

For reference, Figure 2.5 lists the most common Links expressions. Figure 2.6

lists some common operators and their meaning. The code examples use the color

and style conventions shown in Figure 2.7.

Links Dictionary

The Links Dictionary application allows looking up and modifying English dic-

tionary entries. At startup, it presents the user with a search box. As the user

begins to type in this box, the application continuously displays a list of ten dic-

tionary words that could complete the entry at that point (see Figure 2.8). Many

popular applications, famously Google Suggest [Google Inc., 2004], behave simi-

larly. Links Dictionary is based on an ASP.NET version, available online [Narra,

2004], using the same database of 99,320 entries. The Links version extends the

original by allowing the definitions to be added, updated and deleted.

To add a new definition, the user fills in the form in the “Add a definition”

panel at the bottom of the page and clicks ‘Add.’ To update an existing definition,

the user clicks on one of the suggestions, which then expands into a form (see

Figure 2.9). To modify the entry, the user fills in a new word or definition and

clicks ‘Update.’ To delete it, the user clicks ‘Delete.’

This application demonstrates the interactive capabilities of Links and the

way Links programs can communicate between client and server, since every

11

General expressions
x variable

[exp1, exp2, ... expn] list construction

(l1=exp1, l2=exp2, ... ln=expn) record construction

fun (x1, x2, ... xn) { exp } anonymous function

Foo(exp1) variant tagging

query { exp1; exp2; ... expn } query-translation assertion

exp.label record projection

exp1 op exp2 infix operator application

if (condExp) trueExp else f alseExp conditional

switch (exp) { case pat1 -> exp1; exp2; ... expn ... }.

pattern matching

for (qs) 〈where (exp1)〉 〈orderby (exp2)〉 expn list comprehension

escape x in exp continuation capture

formlet bod y yields exp formlet expression

table name with type 〈where constraints〉 from dbexp.

table handle

database name database handle

XML expressions

Concurrency expressions
receive { case pat1 -> exp1; exp2; ... expn ... }.

pattern-matching message reception

spawn { exp1; exp2; ... expn } spawn a thread

spawnWait { exp1; exp2; ... expn } spawn thread, wait for its return value

Database actions
insert table values exp

delete (x <-- src) 〈where (cond)〉
update (x <-- src) 〈where (cond)〉 set (l1 = exp1, l2 = exp2, ... ln = expn)

Figure 2.5: Links syntax reference.

12

++ List (string) concatenation

==, <> Value-(in)equality test

∼ Regular-expression matching

+., -., *., /., ^. Floating-point arithmetic

+, -, *, /, ^, mod Integer arithmetic

<, >, <=, >= Numeric comparison

! Send a message to a process

Figure 2.6: Table of basic Links operators.

black Links code

boldface keywords

blue italic identifiers

blue upright field/variant labels, type/data constructors

gray XML tags

green XML text

Figure 2.7: Color/style coding in listings.

keystroke at the client requires it to perform a database lookup (at the back end)

and update the display (at the front end).

To examine performance, I compared the two versions (Links vs. ASP.NET)

by measuring the time taken to handle a keystroke and produce the list of ten

suggested completions. For the Links version, measurements were made by in-

strumenting the code to output timing information; the ASP.NET version was

measured with a handheld stopwatch, controlling for reaction time. Over the

course of 36 trial lookups with various prefixes, response time (from keypress to

page update) for the Links version was 649ms on average, with a standard de-

viation of 199ms. If we subtract the time spent performing the database query

in each trial, the average time taken by Links itself was 297ms with a standard

deviation of 54ms. Given that no effort has been spent trying to optimize per-

13

Figure 2.8: Links Dictionary in action. The user has entered the letters “qua”

and is shown the first 10 entries beginning with that prefix.

formance of the Links system, this seems to indicate acceptable performance.

Response time for the ASP.NET version over a dozen trials averaged 0.1s after

subtracting a human reaction time measured the same way (the stopwatch was

stopped and started as quickly as possible). Measurements of the ASP.NET ver-

sion were made against a remote server, with its own distinct (and unknown)

performance characteristics. Thus, essentially, the ASP.NET version was faster

than effectively measurable given the equipment at hand, despite the added net-

work delay, not present in the Links Dictionary experiment.

The code for the application is shown in Figures 2.10–2.13; let’s walk through

it. When the page is loaded, the final expression, main() is evaluated; main

14

Figure 2.9: Links Dictionary in action. The user has clicked on the entry for

“quack” and can now edit it.

spawns a thread and binds its identifier to the variable eventLoop (Figure 2.13).

This process will manage the suggestion list. The function main also returns an

HTML document which is installed in the browser window; this HTML contains

event handlers which will be invoked by user activity.

On each keystroke in the searchbox, one of the event handlers, the l:onkeyup

expression (Figure 2.13) is evaluated for its side-effects. In this case it sends

a Suggest message, containing the current searchbox text, to the eventLoop

process. (The expression e1 ! e2 denotes the operation of sending the message

denoted by e2 to the process denoted by e1.) On receipt of a Suggest mes-

sage, the eventLoop process calls suggestView to fetch the new suggestions

and update the view and then calls its own handler function in tail position

to remain receptive. The suggestView function in turn calls completions to

fetch the data, and formatDefView to format that data. The HTML returned by

15

var defsTable =

table "definitions" with

(id:String, word:String, meaning:String)

where id readonly from database "dictionary";

fun newDef(def) server { insert defsTable values [def] }

fun updateDef(def) server {

update (var d <-- defsTable) where (d.id == def.id)

set (word=def.word, meaning=def.meaning)

}

fun deleteDef(id) server {

delete (var def <-- defsTable) where (def.id == id)

}

Figure 2.10: Links Dictionary (1)

formatDefView includes the material for both the static and editable versions of

the entry; the editable version is initially hidden and the routines editDefView

and cancelEditView respectively toggle the visibility of the two versions. The

call to completions will force a transfer of control to the server—an RPC call—

since the completions function is labeled with the server keyword and is here

called in client context. When its return value is passed to the format function,

labeled client, this will force a transfer of control back to the client.

By convention, Links event handlers, such as the l:onkeyup handler in this

example, send a message to another process to do any heavy work. This is be-

cause all such handlers execute within one event-handling thread, and consume

all control on the JavaScript virtual machine, which also blocks the browser win-

dow from doing anything else. This blocking design was chosen to allow process-

ing events serially, that is, to prevent them from interfering concurrently with

one another. When we want concurrency, as in this case, we always use a sepa-

rate process. Moreover, in this case we use a single additional process because

we want the events to be processed serially: each will queue up in the eventLoop

process’ mailbox, in the order they were sent, until previous events have finished

16

fun completions(s) server {

if (s == "") [] else {

take(10, for (var def <-- defsTable)

where (def.word ~ /s.*/) orderby (def.word)

[def])

}

}

fun redraw(xml, defId) client {

replaceChildren(xml, getNodeById("def:" ++ defId))

}

fun suggestView(s) client {

replaceChildren(formatDefsView(completions(s)), getNodeById("suggestions"));

ignore(showElement(getNodeById("def-instr"), "block"));

}

fun editDefView(def) client {

ignore(showElement(getNodeById("def:" ++ def.id ++ "-form"), "block"));

ignore(hideElement(getNodeById("def:" ++ def.id)));

}

fun cancelEditView(id) client {

ignore(hideElement(getNodeById(id ++ "-form")));

ignore(showElement(getNodeById(id), "block"));

}

fun cancelEditsView() client {

var defs = getElementsByClass(getNodeById("suggestions"), "def");

ignore(for (def <- defs) {

cancelEditView(domGetAttributeFromRef(def, "id")); []});

}

Figure 2.11: Links Dictionary (2)

17

fun formatDefView(def) {

<#>

<div id="{"def:" ++ def.id}" class="def"

l:onclick="{cancelEditsView(); editDefView(def)}">

{stringToXml(def.word)}

{stringToXml(def.meaning)}

</div>

<form id="{"def:" ++ def.id ++ "-form"}" class="hidden edit"

method="POST"

l:onsubmit="{

var def = (id=def.id, word=w, meaning=m); updateDef(def);

redraw(formatDefView(def), def.id)}">

<table><tr>

<td><input l:name="w" value="{def.word}" class="word-edit" /></td>

<td>

<textarea l:name="m" rows="5" cols="40">{

stringToXml(def.meaning)}</textarea></td>

</tr>

</table>

<button type="submit"> Update </button>

<button l:onclick="{deleteDef(def.id); redraw([], def.id)}"

style="position:absolute; right:100px;" type="button">

Delete </button>

</form>

</#>

}

fun formatDefsView(defs) {

for (def <- defs)

formatDefView(def)

}

fun newdefFormView(eventLoop) client {

<form l:onsubmit="{eventLoop!NewDef((word=w, meaning=m))}">

<table>

<tr><td class="label">Word:</td><td>

<input type="text" l:name="w"/>

<button type="submit">Add</button></td></tr>

<tr><td>Meaning:</td><td>

<textarea l:name="m" rows="5" cols="80"/></td></tr>

</table>

</form>

}

Figure 2.12: Links Dictionary (3)
18

fun main() {

var eventLoop = spawn {

fun receiver(s) {

receive {

case Suggest(s) -> suggestView(s); receiver(s)

case NewDef(def) ->

newDef(def);

replaceChildren(newdefFormView(self()), getNodeById("add"));

suggestView(s); receiver(s)

case GetDefs(sender) ->

sender ! s;

receiver(s);

}

}

receiver("")

};

<html>

<head>

<title>Links Dictionary</title>

<link href="dict.css" rel="StyleSheet" type="text/css" />

</head>

<body>

<h1>Links Dictionary <div class="lesser">with suggestions</div></h1>

<div class="searchbox">

<h3>Search</h3>

<form l:onkeyup="{eventLoop!Suggest(s)}">

<input type="text" l:name="s" autocomplete="off"/>

</form>

<div id="suggestions"/>

<div id="def-instr" class="note hidden">

Click a definition to edit it</div>

</div>

<div id="newdef">

<h3>Add a definition</h3>

<div id="add">{newdefFormView(eventLoop)}</div>

</div>

</body>

</html>

}

main()

Figure 2.13: Links Dictionary (4)

19

processing. This prevents out-of-order effects where fetching suggestions for one

prefix could return after fetching those for a prefix entered later.

Clicking on a definition invokes the function editDefView, which calls the

function redraw in order to replace the (static) definition with its editable coun-

terpart. Clicking ‘Update’ or ‘Delete’ performs the corresponding modification to

the definition by calling updateDef or deleteDef on the server, and then updates

the view by calling the function redraw on the client.

Finally, the “Add a definition” box at the bottom of the page is produced by

the function newdefFormView. Clicking ‘Add’ sends a NewDef message with the

new data to the eventLoop process. The eventLoop process in turn calls the

server function newDef to add the definition to the database, then resets the form

and updates the view (that’s in case the new definition appears in the current

suggestion list).

This example demonstrates many features of Links: basic syntax, the RPC

mechanism, message-passing concurrency, and the DOM interface.

Draggable lists

The next demo illustrates how a more interactive application can be written in

Links. It shows in more depth the use of the concurrency primitives to encapsu-

late and manage the state of an interactive GUI component. It displays several

itemized lists and the user may drag an item in any list to another position

within the same list (see Figure 2.14). The code for the draggable list demo is

shown in Figures 2.15–2.16.

Each draggable list is monitored by its own process. For each relevant event

on an item (e.g. mouse-up, mouse-down, and mouse-out) a handler sends a mes-

sage to the list’s owning process, indicating the event. The process itself is coded

as two mutually recursive functions, corresponding to two states. The process

starts in the waiting state; when the mouse button is pressed it changes to the

dragging state; and when the button is released it reverts to the waiting state.

When in the dragging state and the mouse is moved (the MouseOut event indi-

20

Figure 2.14: Draggable list: before and after dragging

cates the mouse position has left the original element), the dragged item and the

other item are swapped.

Both functions take, as parameter, the DOM id of the draggable-list element,

thus they know what part of the DOM tree they control. The dragging func-

tion takes an additional parameter, designating the particular item that is being

dragged. Both functions are written in tail recursive style, each one calling either

itself (to remain in that state) or the other (to change state). This style of using

tail-recursion to hold state in a process was taken from the Erlang community.

Eventually we will want to extract the ordering chosen by the user. This

example does not show it, but it only a requires the process to maintain a list of

the elements: whenever it swaps two in the UI, it swaps two in its list as well.

Another form of message can ask it to reply with the contents of this list. It can

be made to respond to another message that asks it to reply with the contents of

that list.

21

fun waiting(id) {

receive {

case MouseDown(elem) ->

if (isElementNode(elem)

&& (parentNode(elem) == getNodeById(id)))

dragging(id,elem)

else waiting(id)

case MouseUp -> waiting(id)

case MouseOut(newElem) -> waiting(id)

}

}

fun dragging(id,elem) {

receive {

case MouseUp -> waiting(id)

case MouseDown(elem) ->

if (isElementNode(elem)

&& (parentNode(elem) == getNodeById(id)))

dragging(id,elem)

else

waiting(id)

case MouseOut(toElem) ->

if (isElementNode(toElem)

&& (parentNode(elem) == getNodeById(id)))

{swapNodes(elem,toElem); dragging(id,elem)}

else dragging(id,elem)

}

}

Figure 2.15: Draggable lists in Links (1)

22

fun draggableList (id,items) client {

var dragger = spawn { waiting(id) };

<ul id="{id}"

l:onmouseup = "{dragger ! MouseUp}"

l:onmouseuppage = "{dragger ! MouseUp}"

l:onmousedown = "{dragger ! MouseDown(getTarget(event))}"

l:onmouseout = "{dragger ! MouseOut(getToElement(event))}">

{ for (item <- items) { item } }

}

<html><body>

<h1>Draggable lists</h1>

<h2>Great Bears</h2>

{

draggableList("bears", ["Pooh", "Paddington", "Rupert", "Edward"])

}

</body></html>

Figure 2.16: Draggable lists in Links (2)

23

Figure 2.17: Initial page.

Figure 2.18: Search in action. Figure 2.19: Search finished.

Progressive Query

This application demonstrates symmetric client and server calls, which are here

used to interactively display the result of some time-consuming server-side ac-

tivity such as searching a large database.

A familiar model for this demo is the kind of flight-search website that searches

multiple independent airlines for flights matching some criteria—which alto-

gether can take some time—and displaying batches of results as they become

available, rather than all at once.

This version simply retrieves a list of fictional wines in a given region. It

is slightly contrived in that, to slow down the query and simulate fetching data

from multiple external sources, it artificially splits up a simple SQL query into

several pieces (one for each winery) and executes them sequentially. The applica-

tion is meant to demonstrate how, in Links, chunks of data which independently

become available can be incrementally pushed to the client for display. We can

24

imagine a similar app drawing from multiple data sources in parallel, pushing

data to the client when each parallel request finishes.

The code for the progressive query application is shown in Figures 2.20–2.22.

The application runs against the database schema of Hugh and Dave’s Online

Wines, the case study application from a book about web application develop-

ment [Williams and Lane, 2004]. The results in the screenshots (Figures 2.17–

2.19) illustrate the freely downloadable data from the book’s website.

The application initially presents a form where the user can select one of the

available wine regions. Upon submitting this form, results begin to appear, in

small batches, on the page.

Submitting the form evaluates, as usual, the expression in the form’s

l:onsubmit attribute. This calls the server function progressiveSearch, which

iterates over all the wineries for the given region, and for each one it fetches the

corresponding wines from the database, then calling the showProgress function

to display these to the user. The showProgress function is a client function, so

when it is invoked, the Links runtime will transfer control temporarily back to

the client to execute the function body. Here the function uses DOM commands

to insert the data into the page document. When the function completes, Links

returns control to the server, where it continues by going around to the next iter-

ation of the wineries loop. This goes on until the server runs out of wineries, and

then the thread doing this work reaches its end and terminates.

Viewed at the low level, a call to a client function like showProgress is im-

plemented as follows: The server responds to the client’s HTTP request, which

had been placed earlier. The HTTP response includes a reference to the func-

tion, its arguments, and a representation of the server-side continuation to be

invoked when the client call is finished. No state whatsoever need remain on the

server once the computation is moved to the client. The unusual execution model

supporting this client-server mobility is discussed in more detail in Section 2.9.

As an advantage of this stateless-server design, if the client quits at some

point during the computation (whether by surfing to another page, terminating

the browser, or pulling the plug out of the wall), then no further work will be

25

fun showProgress(wines) client {

appendChildren(

for (w <- wines)

{stringToXml(w.winery)} {stringToXml(w.name)}

(${floatToXml(w.cost)}),

getNodeById("listing")

);

}

var db = database "winestore";

var inventoryTable = table "inventory" with

(wine_id : Int, cost : Float)

from db;

var regionTable = table "region" with

(region_id : Int, region_name : String)

from db;

var wineTable = table "wine" with

(wine_id : Int, wine_name : String,

wine_type : Int, year : Int, winery_id : Int)

from db;

var wineryTable = table "winery" with

(winery_id : Int, winery_name : String,

region_id : Int)

from db;

Figure 2.20: Progressive query example (1).

26

fun wineriesByRegion(regionID) server {

query { for (winery <-- wineryTable)

where (winery.region_id == regionID)

[winery] }

}

fun wineCost(wineID) {

for (i <- asList(inventoryTable))

where (wineID == i.wine_id)

[i.cost]

}

fun winesByWinery(winery) {

query {

for (wine <-- wineTable)

where (wine.winery_id == winery.winery_id)

for (cost <- wineCost(wine.wine_id))

[(name=wine.wine_name, cost=cost, winery=winery.winery_name)]

}

}

Figure 2.21: Progressive query example (2).

27

fun progressiveSearch(regionID) server {

foreach(wineriesByRegion(regionID), fun (winery) {

showProgress(winesByWinery(winery))

});

}

var blankListing = <ul id="listing" />;

page

<html>

<body>

<h1>Find wines by region</h1>

<form l:onsubmit="{replaceNode(blankListing, getNodeById("listing"));

progressiveSearch(stringToInt(regionID))}">

Region: <select l:name="regionID">

{for (r <- asList(regionTable))

<option value="{intToString(r.region_id)}">

{stringToXml(r.region_name)}</option>}

</select>

<input type="submit" />

</form>

{blankListing}

</body>

</html>

Figure 2.22: Progressive query example (3).

28

required of the server. To keep the computation going, the client must keep

invoking these continuations.

2.4 Language Description

Now that we’ve seen Links in action, we’ll take a tour of its features as a lan-

guage.

At its core, Links is a fairly standard ML-like functional programming lan-

guage with Hindley-Milner type inference. One conspicuously absent feature is

exception handling, which Links should be able to accomodate albeit with a good

deal of additional engineering.

A Links program consists of a series of definitions followed by a main expres-

sion. Running the program evaluates the main expression, which might of course

make use of the definitions. The definitions are all defined mutually-recursively

with respect to one another.

Syntax Links syntax was designed to resemble JavaScript and C-like languages.

Thus we use curly-braces { } to delimit code blocks, function bodies, and clauses

of conditional (if) expressions. The appearance of the code is imperative (looking

like a sequence of commands), rather than declarative (denoting a value)—but

in fact, it is functional: every expression has a value. What looks like the ini-

tialization of a variable, var x = 7; is in fact just the head of a traditional let-

binding, which binds over the whole rest of the block (until the close of the near-

est containing curly-brace { } pair). Names like x defined this way denote an

immutable value rather than a mutable location. There are no built-in mutable-

location constructs in Links.

Conditionals—which always have a value and must therefore contain both

positive and negative branches—are written as in C, but return a value as in

functional languages:

29

if (condition)
trueBranch

else

falseBranch

The two branches are simple expressions, but these can be blocks if we wish to

execute multiple expressions therein and bind them to local variables.

We can perform structural pattern matching on any value with the switch

construct. Unlike the switch of C or JavaScript, this performs pattern matching

like ML, so the outermost constructors of the value are matched to a pattern and

inner values are bound to variables.
switch (scrutinee) {

case pat1 -> e1
case pat2 -> e2
...

}

Like the conditional, this expression returns the value of the matching branch.

Functions are declared in any scope as follows:

fun f (x1, x2) { bod y }

This declares a function called f taking parameters x1 and x2 and whose body

expression is bod y. Function values can also be created anonymously simply by

omitting the name. So

fun (x1, x2) { bod y }

is an expression whose value is a two-argument function. All variables are

scoped lexically, so such values may capture the values of variables from the

environment that are free in the function expression. Links functions are multi-

argument, so the above examples define functions of two arguments, which can-

not be applied to a single pair.

The lexical scope of a var or fun declaration includes all of the following

expressions within the enclosing { } block. Thus in this example the scope of

the underlined binder x consists of the underlined expressions.

30

fun f(x) {

var x = x+1;

var y = x;

fun g(z) { x + z };

x + 7

}

Note that var bindings are not recursive: the x appearing in the right-hand side

of the var x binding refers to the parameter x above it, not to the x being defined.

Types and values Links uses Hindley-Milner type inference with row vari-

ables [Rémy, 1993, Pottier and Rémy, 2005]. Basic Links types include integers,

floats, characters, booleans, lists, functions, records, and variants. The syntax of

types and value constructors is as follows:

• A list is written [e1,...,ek], and a list type is written [A].

• A record is written (f1=e1,...,fk=ek), and a record type is written

(f1:A1,...,fk:Ak |r), where r is an optional row variable. Field names,

like f1, must begin with a lower-case letter.

• A variant value is written Fi(ei) and a variant type is written

[|F1:A1,...,Fk:Ak|r|]. Variant tags, like F1, must begin with an upper-

case letter.

• A lambda abstraction is written fun (x1,...,xk) {e}, and a function type

is written (A1,...,Ak) -> B. Parentheses around argument types are manda-

tory, even when only a single argument is present. This unfortunately ne-

cessitates double parenthesis when a single argument is a record type.

The String type is simply a list of characters (Chars), and tuples are records

with sequential natural numbers as labels.

XML Links includes special syntax for constructing and manipulating XML

data. XML data is written in ordinary XML notation, using curly braces to indi-

cate embedded code; these expressions are called “quasiquotes.” Embedded code

may occur in attributes, where it has string type, as well as in the body of an

31

element, where it has XML type. The direct inclusion of XML syntax makes

it easy to paste XML into Links code. The parser begins parsing XML when a

< is immediately followed by a legal tag name. (A space must always follow <

when it is used as a comparison operator; it so happens that legal XML does not

permit a space after the < that opens a tag.) Links also supports the syntactic

sugar <#> · · · </#> for specifying an unrooted list, or hedge, of XML trees, as in

the function formatDefView in Figure 2.12. These hedges have type Xml while

single trees have type XmlValue.

Links XML quasiquote expressions only generate well-formed XML; the parser

rejects quasiquotes that would lead to ill-formed XML. The validity of an XML

document, which Links does not guarantee, can only be established by reference

to a schema, which specifies which XML tags are allowed in which combinations

and what attributes each can have. The XML variant of HTML, called XHTML,

has its own schema, and Links programs are informally bound to produce valid

XHTML documents. Yet Links goes no further than checking well-formedness;

validity checking for quasiquotes in the setting of higher-order programming lan-

guages is already well-studied and tractable [Hosoya and Pierce, 2003, Frisch,

2006], so it was not a focus of the Links project.

Parallel to the Xml type, Links also has a DomNode type, holding references

to DOM nodes. These reference mutable nodes with identity, so two distinct

nodes with the same structure are unequal, and each non-null DomNode value

refers to a DOM node which is actually part of the current document (although

it may be invisible for various reasons). Links provides library functions to ac-

cess and modify the DOM, mirroring the functions specified by the W3C DOM

standard [World Wide Web Consortium, 2004].

Note the relationship between pure XML and impure DOM trees: DomNode

is a mutable DOM reference, while Xml is an immutable list of XML trees. We

can convert the former to the latter with the getValue primitive, which makes a

deep copy of the tree rooted at the node, returning it as a singleton XML-tree list.

Other operations convert the latter to the former by installing XML in the active

DOM, which creates new DOM node instances for the nodes of the XML tree.

32

There is also a null value in the DomNode type, reflecting the fact that W3C DOM

functions can return a null value. (Perhaps it would be more in keeping with the

statically-typed philosophy to treat these as functions into an option type.)

The operations on Xml and DomNode values are shown in Figure 2.23 and 2.24;

they behave as follows.

Given an XML value, we can project its component data with getTagName,

getAttributes and getChildNodes. We can test for and project particular at-

tributes using hasAttribute and getAttribute. And we can extract its text

content—the concatenation of all the descendant text nodes—with getTextContent.

We can fetch the root DomNode of the document with getDocumentNode, and

fetch one by its ID attribute using getDomNodeById. The functions parentNode,

firstChild, nextSibling provide navigation, returning the DOM node with

the corresponding relation to the given one, or the null node if none exists.

The getValue function extracts the structure of the given node as XML and

isNull tests whether the argument is the special null value. The operations

removeNode, insertBefore, appendChildren, replaceChildren, replaceNode,

swapNodes and replaceDocument alter the document; those which take an Xml

parameter first create a new DOM node from the list of XML trees and then

installs this somewhere in the document.

33

getTagName : (XmlValue) -> String

getChildNodes : (XmlValue) -> [XmlValue]

getAttributes : (XmlValue) -> [(String,String)]

hasAttribute : (String, XmlValue) -> Bool

getAttribute : (String, XmlValue) -> String

getTextContent : (XmlValue) -> String

Figure 2.23: Library functions for Xml.

getDocumentNode : () -> DomNode

getDomNodeById : (String) -> DomNode

getValue : (DomNode) -> XmlValue

isNull : (DomNode) -> Bool

parentNode : (DomNode) -> DomNode

firstChild : (DomNode) -> DomNode

nextSibling : (DomNode) -> DomNode

removeNode : (DomNode) -> ()

insertBefore : ([XmlValue], DomNode) -> ()

appendChildren : ([XmlValue], DomNode) -> ()

replaceChildren : ([XmlValue], DomNode) -> ()

replaceNode : ([XmlValue], DomNode) -> ()

swapNodes : (DomNode, DomNode) -> ()

replaceDocument : (XmlValue) -> ()

Figure 2.24: DOM interface.

34

for (var x <- e1)

e2

concatMap(fun(x){e2},

e1)
for (var x <- e1)

where (e2)

e3

concatMap(fun(x){if (e2) e3 else []},

e1)

for (var x <- e1)

orderBy (e2)

e3

concatMap(fun(x){e3},

sortBy(fun(x){e2},

e1))

for (var x <- e1)

orderBy (e2)

where (e3)

e4

concatMap(fun(x){if (e3) e4 else []},

sortBy(fun(x){e2},

e1))

for (x <- e1, y <- e2)
orderBy (e3)
where (e4)

e5

concatMap(fun((x,y)){if (e4) e5 else []},

sortBy(fun((x,y)){e3},
concatMap(fun(x){

concatMap(fun(y){ [(x,y)] },

e2)}, e1)))

Figure 2.25: List comprehension syntax examples and their desugared forms.

List comprehensions The for (var x <- e1) e2 construct is a list compre-

hension. It evaluates e2 once for each element of e1 and concatenates the lists

produced by e2 into a result list. Links comprehensions also support several

clauses which modify their behavior, including where and orderBy. The exam-

ples in Figure 2.25 show syntactic forms on the left, corresponding to expressions

on the right that use only library functions.

Regular expressions To match a string against a regular expression we write

e ∼ /r/ where r is a regular expression. Curly braces may be used to substitute a

string into a regular expression, so for example /{s}.*/ matches any string that

begins with the value bound to the variable s.

Concurrency A concurrent programming style has been found useful in pro-

gramming user interfaces, where many UI components may independently react

to user input. A user action may invoke a lengthy computation, such as fetching

mail from a certain mailbox on the server, yet we want other controls to remain

35

spawn { e } spawn a new thread

spawnWait { e } spawn thread, wait for completion

recv() receive one message

receive { cases } receive one message and pattern match

self() return process identifier

proc ! msg send message to a process

Table 2.1: Links concurrency primitives.

responsive; for example, the user may wish to view other mailboxes while the

first one is fetching. Concurrency is a useful way to structure such a program.

With this in mind, Links supports concurrent programming, under a model

with no shared memory between threads. (In this thesis, the terms “process” and

“thread” are used interchangeably.) Following Erlang [Armstrong et al., 1993],

each thread has a single incoming mailbox, which no other thread can read. The

concurrency primitives are shown in Table 2.1.

The expression spawn {e} creates a new process and returns a fresh process

identifier. The primitive self() returns the identifier of the current process. The

statement e1!e2 sends message e2 to the process identified by e1. The function

recv() simply returns the next message from the caller’s mailbox. And finally,

the expression
receive {

case p1 -> e1
...

case pn -> en
}

extracts the next message waiting for the current process, or blocks (suspends)

the process until there is such a message, and executes the first case whose

pattern matches the message. (Unlike in Erlang, it is a static error if no case

matches, which fits better with Links’ discipline of static typing.) The receive

expression is just syntactic sugar: receive { cases } is equivalent to

switch (recv()) { cases }.

36

The spawnWait form spawns a thread as does spawn, but then blocks the

parent until this child thread completes, returning the value of e to the parent.

This is useful in particular because the child thread has a fresh mailbox, thus

the type of its messages does not “pollute” the parent thread’s mailbox, which

was a problem observed in Links programs lacking spawnWait.

By convention, the type of messages sent to a process is a variant type, but

it can in fact be any type. Using a variant allows tagging different sorts of mes-

sages, each of which contains different parameters.

There is a distinguished main process which executes the initial expression

and all event handlers. Running all event handlers in a single process guaran-

tees that events are processed in the order in which they are received.

Concurrency is discussed further in Sections 2.6 and 2.7.

User events A Links program specifies its interest in user events through

HTML, using the event types defined by the DOM Events interface [World Wide

Web Consortium, 2003b]. The association of event listeners with DOM nodes is

similar to that of HTML 4.0 [World Wide Web Consortium, 1999], where event

listeners were specified through element attributes.

In Links, then, event listeners can be specified as element attributes onclick,

onkeyup, etc., but prefixed with l: to echo the use of namespaces in XML, like a

special “Links namespace” (but this namespace exists only in Links XML quasi-

quotes and is not defined through the XML namespacing mechanism). Further,

such listeners can refer to the values of form input fields carrying an l:name

attribute (which also generates an HTML name attribute on the element). The

value of an input element’s l:name attribute becomes a bound variable for the

scope of all the event listeners in any descendent element of that input element’s

containing form element. Event listeners can be seen here in the Links Dictio-

nary code:
<form l:onkeyup="{eventLoop!Suggest(s)}">

<input type="text" l:name="s" autocomplete="off"/>

</form>

The l:onkeyup attribute is the event listener, and the input element’s l:name

37

attribute defines a variable s that will be bound, when the listener is invoked, to

the String value of that input element (the text entered therein) at that moment.

A subtle semantic detail needs explaining. Whereas in other XML-quasiquote

contexts, curly braces introduce Links code that is substituted (i.e., evaluated

immediately, with the result then taking the place of the curly-braced code), the

l:event attributes are different: their code is only evaluated when the event

listener is invoked, and only for side-effects.

Because of the scoping rules, Links can statically ensure that form-input

fields are referenced from code in a consistent manner. This differs from dynamic

web frameworks, where the form fields are typically indexed by string values at

runtime, exposing them to runtime failure.

User interface and concurrency Event handlers like l:onkeyup are run by

the main thread. Normally, threads can pre-empt one another at any time, as one

would expect from concurrent threads. However, when the main thread is han-

dling a user event, the handler is executed atomically—it effectively freezes the

scheduler, preventing thread switches until the handler. This atomicity allows

the programmer to be sure events are handled in the order they occur; with-

out this, a second event could pre-empt an ongoing one, and could be completely

processed, before the first one had taken action. However, this means that a long-

running event handler could starve or delay other threads, so an event handler

should execute quickly.

Event handlers are expected to execute quickly, so we follow a convention that

each handler either sends a message or spawns a fresh process. For instance, in

the Links Dictionary application, each event occurence sends a message to the

handler process that is responsible for finding and displaying the completions.

This puts any delay resulting from the database lookup into a separate process,

so the user-interface thread remains responsive, and any future keystrokes are

echoed immediately. Furthermore, the messages received by the handler process

are processed sequentially, ensuring that the updates to the DOM happen in the

order the keystrokes were received.

38

Database access Database queries are expressed directly in Links code, par-

ticularly with list comprehensions; so the programmer uses “native” operations

rather than an external API for database access. In particular there are Links

expressions representing database handles and table handles. The latter can be

coerced directly to lists, giving the list of rows of the table at that moment; this

effectively entails a database query.

Semantically, the Links compiler may evaluate any expression through the

database system, provided it can preserve the value and any side-effects of the

expression—but it seems never a good choice to do so unless the expression actu-

ally involves the database—and of course, if an expression depends on a database

table, we must execute something in the database system. But the line where

data from a database query is returned to the Links runtime for further process-

ing is, by default, unspecified.

In order to regain some control over this division of labor, Links offers an

expression annotation, query {· · ·}, which requires its content to be executed as

a query—and if this is not possible, the compiler must indicate a static error.

This allows the programmer to detect flaws which prevent an expression from

executing completely in the database system as part of a single query.

For example, if the programmer wishes to equijoin two tables with a Links

expression, but Links cannot create a database query out of the expression,

then normally it may obey the semantics by reading both tables completely and

performing the join itself with a naive algorithm. Yet if the join expression is

wrapped in a query annotation, Links is obliged to evaluate the equijoin in

the database (which, we assume, is an efficient way of doing so, exploiting in-

dexes and query planning). If Links cannot meet that obligation—for example,

if the expression is not actually equivalent to an SQL statement—then it fails at

compile-time, giving the programmer a chance to improve the expression so that

it can be evaluated in the database system.

Database connections are introduced with the database keyword, giving the

instance name and optional configuration data, which can also be read from a

39

configuration file.

Table handles are introduced with the table keyword and the table name,

the type signature of a row in the table, and the database connection.

The coercion operator asList takes a table handle to the list of its rows,

and the syntax for (var x <-- e1) e2 (with a long arrow) is syntactic sugar for

for (var x <- asList(e1)) e2 (with a shorter arrow).

In the following example, we use a table of words, as in the Links Dictionary

example. For example, the expression
for (var def <-- defsTable)

where (def.word ∼ /s.*/) orderBy (def.word)

[def]

compiles into the equivalent SQL statement
SELECT def.meaning AS meaning, def.word AS word

FROM definitions AS def

WHERE def.word LIKE '{s}%'

ORDER BY def.word ASC

This feature, called language-integrated query, was pioneered in systems such

as Kleisli [Buneman et al., 1995, Wong, 2000], and is also central to Microsoft’s

LINQ for .NET [Microsoft Corporation, 2005]. Chapter 5 formalizes a query-

compilation system like the one employed by Links.

The regular-expression matching operator ∼ is in this case compiled into the

LIKE operator of SQL. At run time, the phrase {s} in the SQL is replaced by the

string contained in the variable s, including escaping of special characters where

necessary. We cannot translate all regular expressions to uses of the LIKE oper-

ator, and this is one place where query translation can fail at runtime. (A better

design might be to offer a “like” operator in the Links library, with semantics

equivalent to that of SQL, and translate it directly.)

Links also has statements to update, delete from, and insert into a database

table, closely modeled on the same statements in SQL. These can be seen used

in the functions newDef, updateDef and deleteDef in Figure 2.10.

Serializable continuations In Links, all values are serializable—and that

includes closures and continuations. A continuation is represented as a stack

40

of pointers to control contexts with associated environments. To serialize one of

these, Links generates a label for each control context, and replaces each one

with its label, also capturing the data environment for each one. The label must

be generated stably, or deterministically, so that it can be located again on an-

other invocation of the server, after parsing the program from scratch. Serial-

izing other values is easier: each base type has a direct representation and the

other constructed types are represented by a pair of an identifier of the construc-

tor and the serialization of the contents.

This method transforms a continuation into a compact bit string that, to-

gether with the original code, contains all the information present in the contin-

uation. As long as the code itself remains unchanged, we can safely resolve the

code references in the bit string.

This mechanism can be distinguished from one which retains something at

the server to correspond to each continuation—for example, one which keeps a

record in memory or a process running for each client session or each branch

thereof.

The choice to replace code pointers by computed strings is critical. By omit-

ting a serialization of the code itself, we save a great deal of space and also

preserve the secrecy of server-side code. And by indicating code points with com-

putable values, we ensure that the representation is stable across distributed

instances of the web server and across reboots. The only thing that can break a

Links link is a change to the original program. Failing gracefully in this situation

is an important area of future work.

The size of a serialized continuation depends on the amount of data captured

in it, which can vary dynamically at runtime. Normally, these representations

are very small, since they do not represent long call stacks. A typical continua-

tion is like any other web link: it designates a program point with a small num-

ber of parameters, usually strings or integers. However, since the capture of data

is implicit, it could easily overflow, perhaps even as a programming accident. It

would be possible to accidentally capture a continuation whose representation is

larger than the reasonable size of a URL (typically around 1024 characters for

41

existing browsers and servers). This risk begs for additional techniques, both to

warn of the possibility of large continuations and to provide means of wrangling

large amounts of data.

The representations used in RPC calls (as opposed to continuations captured

for web links) are particularly likely to grow large. The issue is far less pressing,

however, since these are delivered in HTTP request and response bodies, which

are limited only by memory and disk space.

Security also becomes a concern when values are automatically serialized.

In particular, this serialization might leak data that the programmer never in-

tended to be revealed outside the program, or allow attackers to tamper with

data that has already been computed. While the Links implementation described

here makes absolutely no effort to confront these problems, work by Baltopoulos

and Gordon [2009] shows how such serializations can be encrypted and signed

cryptographically to prevent against both kinds of problems, and proves the

transformations correct with respect to a semantics of a core language. Such

protections would be necessary in any security-sensitive use of a Links-like lan-

guage.

Page flow A distinctive feature of web programming, as compared with batch

and event-loop programming, is the need to describe the relationship between

pages, as experienced by the user—which we’ll call page flow.

The execution model of Links spans across web pages and so it incorporates

page flow as a static feature of programs. It has a variety of facilities for support-

ing different kinds of page-flow designs, which are described in Section 2.8.

2.5 The Web environment

To understand the special execution model of Links, we need to understand the

environment around a web program, as it is generally understood by practition-

ers; this section defines some terms and concepts from web standards and engi-

neering practice.

42

Except for personal and experimental systems, nearly every web system in-

cludes several (middle-tier) server machines—a “server cluster” of at least two—

across which the load of incoming requests is balanced by a special network

router called a load balancer. Load balancing is ubiquitous in web systems for

a host of reasons: the need for fault-tolerance, as well as the typical hit rate of

“web-scale” application, coupled with a drive for performance and the fact that

web requests typically comprise little hard computational work.

As such, one cannot assume that two successive web requests from a partic-

ular client will be received by the same server machine. While load balancers

can be configured as “sticky,” meaning they attempt to route requests from the

same client to the same server over time, this cannot be relied upon, for sev-

eral reasons. First, the information available to the load balancer is unreliable:

the principal identifier of the client is IP address, which can change during a

session for a particular client (either because the client moves or because it is go-

ing through a proxy that hides it behind a bevy of IP addresses). HTTP cookies

can be used instead of IP addresses, but extracting these requires parsing the

HTTP protocol, requiring more complexity in the router software, and anyway

these can be rejected or spoofed by clients. Further, a great number of clients

can be represented by a single IP address, particularly with very large service

providers, and making them all sticky to one server undermines the opportu-

nity to balance the load. Next, load balancers are under pressure to handle a

lot of requests very quickly and with a modest amount of storage, so that keep-

ing track of the mapping between IP addresses to server machines may be too

expensive. System-engineering experience has shown that the best method for

load-balancing tends to be to assign requests to servers either probabilistically,

based on load information from the servers, or simply in round-robin.

These facts determine the special execution environment of web applications.

Critically, they must handle individual requests without relying on having any

state information in memory, because any server in the cluster might handle any

given request. Generally speaking, the means for sharing state is to write to

shared concurrent storage media, perhaps an RDBMS or a distributed filesys-

43

tem, although more ephemeral means, such as distributed in-memory caches,

are sometimes employed.

Web applications also live in an information-architecture environment. The

architecture of the web is characterized [World Wide Web Consortium, 2003a,

Berners-Lee, 1998] as a collection of web resources, each identified by one or

more uniform resource locators or URLs. A URL is thus posited to refer stably to

a particular resource, which encompasses the collection of documents that may

be returned upon requesting the URL; these documents are also called repre-

sentations of the resource. Documents can be in any format (including images,

videos, and other media); in this thesis we are mainly concerned with resources

represented as HTML documents. Besides fetching representations, web stan-

dards also accomodate requests that post information to a resource; what this

means is generally up to the application designer.

Now let us make a broad, imperfect definition of a web application. We can

view it is as a graph (perhaps implicit, perhaps infinite) of web resources. We

specialize those web resources to dynamic web pages—HTML documents with

associated code and document structure. Each dynamic web page has its own vir-

tual machine (VM) for running the page’s code, and at any moment has its own

state, including the document structure, which can mutate over time. This vir-

tual machine is nothing other than the browser’s instantiation of its JavaScript

engine and is limited, by the browser, to existence within that page. This con-

tainment means, inter alia, that the virtual machine suspends execution when

the browser window is closed or the user navigates to another page—and its

state can be reset completely when the page is no longer active. The virtual ma-

chine is empowered to make HTTP requests to fetch other web resources, which

it can then process as it likes. It is also empowered to manipulate the document

and listen for user activity using the DOM interface [World Wide Web Consor-

tium, 2004, 2003b]. The web application can move suddenly between web pages,

e.g. when a user clicks a link, thus abruptly moving between program points,

and moreover the active pages, which are effectively threads of control, can be

cloned and eliminated as a user opens and closes new windows on the site—a

44

phenomenon we call re-entrancy and which the programmer must handle.

Because of all this, a web application is crucially different from batch and

event-loop programs. A batch program starts at a unique entry point and runs

to termination. It follows a specific flow of control, designed by the programmer,

until completion.

An event-loop program does dispatch user events to registered event listen-

ers, as does the DOM virtual machine. But missing is the graph of separate

pages which the user can browse freely and clone. Desktop GUI programs, for

example, need not handle the possibility of re-entrance. Such programs have a

much more constrained execution model.

2.6 Links execution model

The Links execution model slightly extends the general web execution model.

We keep the idea of a page-contained virtual machine but replace it with a Links

virtual machine which has extra capabilities, including concurrency; also the

constitutent pages or resources are defined by program points and their param-

eters (essentially, by closures), so that they are statically-defined entities. The

Links virtual machine is only a thin addition to the JavaScript virtual machine,

and inherits most of its behavor from its JavaScript counterpart.

The principal novelty is that the Links virtual machine spans both the browser’s

VM and a server-side execution environment. Threads in the Links VM can move

smoothly from client to server and back again by means of RPC calls, which are

simply calls to location-annotated functions. The location of execution makes a

difference for a number of reasons: some operations may be more efficient when

executed in one location or the other; some code may be secret so that it must

never be transmitted to the browser; and some operations may be available only

at one location, so choosing the point at which the transfer of control happens

might make a big difference to efficiency. The Links language and runtime are

designed to make these transfers of control as seamless as possible.

Now, we can describe the execution of a Links program broadly as follows. Se-

45

mantically, fetching the base URL of the program begins executing the program’s

main expression. Operationally, this delivers enough JavaScript to the client for

it to begin executing this main expression, ultimately producing a document (in

HTML) which is installed into the browser’s DOM. Any of the links or buttons

on the page may be associated with a Links expression or continuation; invoking

one of these moves the VM to a new page and, again, delivers enough JavaScript

to the client to run that expression. We can imagine that the virtual Links ma-

chine for each page starts up upon delivery of the JavaScript and terminates

when the user leaves that page through the browser’s controls.

We do not try to create a virtual machine that transcends the page limitation

of the browser’s engine, both because it would be difficult, given the browser’s

security policies, which are explicitly designed to prevent widespread interpage

communication, and also because the limitation to a page is a useful structuring

mechanism. Because users can browse an unbounded series of pages and leave

the browser open for a very long time, there is no other natural limit on the

execution of client-side web code. Limiting the virtual machine to a page thus

gives a natural cleanup point and saves the programmer from managing threads

and state across the long lifetime of the browser itself.

Figure 2.26 depicts the execution environment of a Links program including

several web pages, each with its own virtual machine, each making RPC calls

to the server cluster (or cloud). This drawing represents the fact that each page

has a separate virtual machine and does not share state with, nor can it send

messages to, other pages, and interacts with the database or other pages only

through the server cloud, which itself can be distributed across many machines

and thus holds no state of its own.

Concurrency model

Among the facilities of the Links virtual machine is the ability to fork and com-

municate between concurrent threads. Furthermore, each thread can move back

and forth between client and server independently. This means that any thread,

46

Figure 2.26: Links VMs live within Links web pages and communicate with the

server.

47

even if it is presently running at the client, can access the program’s server-

located resources (which might include secret algorithms or access to back-end

resources like the database) by means of RPC calls, which are executed sequen-

tially within that thread.

Threads can be spawned at any time, regardless of the execution location.

This is semantically simple, but delicate from the implementation point of view.

Since each thread belongs to a particular VM, it belongs to a particular active

web page, and so each thread is “homed” to a particular active page. Among

the consequences of this fact is that if the user closes the corresponding browser

window, or navigates away, its Links virtual machine will stop abruptly, and thus

none of its threads are guaranteed to continue. This is surprising from the point

of view of conventional programming, but here we view the client as king, and

computation is principally performed only on the client’s behalf. To drive the

point home, the server, in the Links model, is really just that: it merely serves,

and has no rights of its own.

Figure 2.27 shows an example VM with threads moving between client and

server, as it is defined semantically. A thread (Thread 1) begins in the client and

forks a second thread (Thread 2), which then moves to the server, where it forks

another (Thread 3). Later, Thread 2 finishes its server-side business and returns

to the client while Thread 3 keeps running on the server. Still later, Thread 3

returns to the client, does more business, and finishes.

Figure 2.28 shows the same execution, as it occurs at the low level. At this

level, when Thread 2 needs to return to the client, the server must serialize its

complete state to the client, so both threads are suspended, serialized, and de-

livered; the client, however, immediately sees that one of these threads (Thread

3) is still marked as running at the server, so it revivifies this suspended thread,

making a server request to continue it; meanwhile it revivifies Thread 2 simply

by continuing it directly at the client. Thread 3, because it spawns no further

threads, is living in its own server-side execution environment, so when it re-

turns to the client it need not disturb any other threads.

We need to suspend and serialize all the server-side threads when any one

48

Figure 2.27: Links threads moving independently between client and server.

Figure 2.28: Mobile threads (low-level view).

49

of them moves to the client because of the need to tunnel our communications

through the HTTP protocol. Recall that the server threads are all living in the

confines of a particular HTTP request. Once we return a response to that request

(and hence to that client) we’ll have no good way of sending further data. So,

whenever we need to return some data to the client, we completely stop the

server-side VM and serialize its state over to the client. The client extracts the

needed data and then re-starts the server-side VM with a new HTTP request.

This way we always keep open a channel of communication from server to client.

Semantically, we view Thread 3 as continuing transparently on the server

(rather than taking a detour to the client) since it makes no progress between

the time it is bundled with Thread 2 for delivery to the client and the time it is

revivified on the server. Such a detour, which may arise from technical details,

can cause the thread to be delayed for quite a long time while this operation is

taking place.

The concurrency implementation is described in detail in Section 2.7.

Re-entrancy

Section 2.5 noted the re-entrancy property of the web environment. How does

this affect the Links virtual machine? Again, a server serving a Links appli-

cation will route incoming requests to any of several internal program points,

corresponding to web links, and they can be triggered in any sequence. The pro-

gram has no predefined end and the client can always give rise to new server

computations, at any number of entry points, by invoking a link or an RPC call.

Semantically, we wish for these entrances not to have unexpected side-effects,

that is, an entrance at a given expression should have just the side-effects of

that expression. On the other hand, we want top-level definitions to be in scope

everywhere, according to the lexical scoping principle—so we have to take care

to make sure that their semantics are well-defined.

To ensure this, we choose to require that top-level definitions are pure, that is,

they cannot bind to an expression that has side-effects or depend on the state of

50

the external world. Generally, they will be constants or functions (the functions

themselves need not be pure). This way, when the server is invoked to evaluate

a given expression, it can always read in the program from scratch and execute

the desired expression without worrying about whether and how to evaluate top-

level side-effects. In fact, there is no question about when those top-level side-

effects would be run; top-level definitions are simply “always already” there.

2.7 Concurrency implementation

Since JavaScript’s execution model is sequential, implementing concurrency takes

some doing. Links uses the following techniques:

• compiling to continuation-passing style (CPS),

• inserting explicit context-switch instructions during compilation,

• performing server calls asynchronously (with XMLHttpRequest),

• eliminating the stack frequently, using a trampoline.

Using CPS allows us to reify each process’s control state, but since JavaScript

does not perform tail-call elimination, classic CPS would quickly overflow the

JavaScript stack after a small number of function calls (hundreds or thousands);

thus we use trampolined style [Ganz et al., 1999] to regularly eliminate the stack.

Fortuitously, trampolined style is also a traditional part of a CPS-based thread

implementation. The idea is that instead of invoking a function directly, each

callsite returns immediately to an outer loop, the trampoline, which re-invokes

one of the existing threads–this is called bouncing the trampoline.

So the Links JavaScript compiler replaces every function and continuation

application with a call to special yield functions, which take care of trampolin-

ing. Most of these are simply no-ops—they just apply the function or continua-

tion immediately—but periodically one will actually perform a bounce. We need

to perform a bounce often enough to prevent the JavaScript stack from overflow-

ing; its size varies by implementation but generally seems to allow on the order

51

of 1000 nested function calls. The parameter _yieldGranularity controls the

number of direct calls made by the yield functions before the bounce occurs.

We have two yield functions, one inserted around function applications, _yield,

and another inserted around continuation applications, _yieldCont; the Java-

Script code for these is given in Figures 2.29 and 2.30. In fact the two are nearly

identical and could be implemented with a common function that accepted a

thunk (zero-argument function) instead of separate arguments for the various

applicands; but this would require creating new JavaScript thunks for every ap-

plication, which would be very slow; so we partition the function into two to avoid

creating the thunk.

Links uses two different trampolines, to implement the two concurrency modes

(normal and atomic) described earlier (Section 2.4, p. 38). Essentially, Links has

a trampoline of its own, based on exceptions, while it also uses the JavaScript

interpreter’s event loop as a trampoline. Bouncing the latter trampoline allows

event handling and running other threads; the exception-based trampoline disal-

lows them. In various situations we adjust a global flag, _handlingEvent, which

indicates to the yield functions which trampoline mode to use.

To understand the event-loop trampoline, let’s take a close look at the browser’s

mechanisms. (The following is a working model, not necessarily an accurate de-

scription of a real browser.) The browser is continually running an event loop

which checks whether certain events have happened and dispatches to appro-

priate code (perhaps JavaScript code from the page or perhaps its own inter-

nal code). These events include user actions, network activity (e.g. responses

to asynchronous XMLHttpRequest invocations), and timeout events. Timeout

events arise because the browser continually maintains a list of callback func-

tions with associated timeouts—times at which they become eligible to run. The

setTimeout function, used in our trampoline, adds a callback to this list, which

allows us to schedule code to be run from the browser’s event loop. Any of these

events (timeouts and user- and network-activity) might run in a given iteration

of the event loop. The whole event loop, including all the JavaScript it invokes,

is single-threaded. This loop acts as one of our two trampolines.

52

function _yield(f, a, k) {

++_yieldCount;

if ((_yieldCount % _yieldGranularity) == 0) {

if (!_handlingEvent) {

var current_pid = _current_pid;

setTimeout((function () {

_current_pid = current_pid;

f(a,k) }),

_sched_pause);

return;

} else

throw new _Continuation(function () { f(a,k) });

} else {

return f(a,k);

}

}

Figure 2.29: The yield function for function application.

The second argument to setTimeout is effectively a lower bound on how soon

the callback is eligible to run. Ideally this value should be zero, so there would be

no delay between the moment a thread yields and the moment it is eligible to run

again. But in some browsers, passing zero bypasses the event loop completely,

thus blocking event handling, so we pass a configurable value, _sched_pause

and set it to a small non-zero value.

The two trampoline modes are bounced as follows:

• The timeout-callback trampoline is bounced by returning directly to the

event loop, but only after registering the continuation thunk with setTimeout.

(Because the code is in CPS, returning at all returns from all callers, right

to the event loop.) The job of the thunk is to maintain the “current process

ID” global and then continue with the thread’s next application, either of a

function or a continuation.

• The exception-based trampoline is bounced by throwing an exception con-

taining the current continuation. Throwing the exception unwinds the

53

function _yieldCont(k, arg) {

++_yieldCount;

if ((_yieldCount % _yieldGranularity) == 0) {

if (!_handlingEvent) {

var current_pid = _current_pid;

setTimeout((function () {

_current_pid = current_pid;

k(arg) }),

_sched_pause);

return;

} else

throw new _Continuation(function () { k(arg) });

} else {

return k(arg);

}

}

Figure 2.30: The yield function for continuation application.

stack; the trampoline then catches the exception and invokes the contin-

uation.

The JavaScript code for the exception-based trampoline is shown in Figure 2.31.

Given a continuation, _exceptionTrampoline runs it, catching any bounces that

occur, as _Continuation exceptions, and re-invokes the continuation each car-

ries. It starts by setting the global _handlingEvent to tell the yield functions to

use the exception method of bouncing. This global must be restored on any of the

paths that leave the function, whether by a true exception or a normal exit. The

trampoline uses a loop with no termination condition (for (;;)), which keeps

reinvoking the next continuation at each iteration. If one of the cont invocations

eventually returns, corresponding to the thread’s terminatation, we break the

loop, restore the _handlingEvent global and return.

There is no code for the timeout-callback trampoline because, as noted before,

this is handled by the browser’s machinery.

54

function _Continuation(v) { this.v = v }

// An exception constructor.

function _exceptionTrampoline(initialCont) {

var _cont = initialCont;

_handlingEvent = true; // Globally indicate exception mode.

for (;;) { // Looping until we break,

try {

_cont(); // try invoking the continuation;

break; // when it returns, exit the loop.

} catch (e) { // Upon exception,

if (e instanceof _Continuation) { // if it's a bounce,

_cont = e.v; // use its continuation &

continue; // start the loop again.

} else { // a real exception,

_handlingEvent = false; // clean up and

throw e; // re-throw.

}

}

}

_handlingEvent = false; // Exiting normally, clean up.

}

Figure 2.31: The exception-based trampoline

2.8 Page flow definition

There are at least two approaches to planning page flow in a web application.

One is to plan a central sequence of pages (a “linear page flow”) treating other

paths as second-class; the other approach is to view the application as having a

fundamentally web-like (or graph-like) structure, with each edge equally impor-

tant. Both viewpoints are common in application design, and are not mutually

exclusive: they can be mixed within one design. Links has special features sup-

porting each style, as described here.

55

Branching page flow

Most web pages have many links, all of more-or-less equal importance. The ap-

plication presents the user with a spectrum of choices for what to do next, the

user drives, and the programmer is indifferent to the user’s choice. We call this

branching page flow.

In Links, such links are specified as expressions embedded in the HTML,

whose value is the target page. Because of the usual scoping rules for expres-

sions, the language can statically check that their referents actually exist and

are well-typed.

To illustrate, consider an application for managing a set of kitchen recipes

and its listing page which displays a list of recipes by name, each linked to a

page showing the details of that recipe. When displaying the listing, suppose

we have variables recipeID and recipeName in context. The link for the recipe

details page might look as follows:

<a l:href="{viewRecipe(recipeID)}">{recipeName}

The l:href attribute contains an expression whose value will become the next

page; by convention this would be a function call, to a function specializing in

that sort of page. The content of the anchor tag (<a>) is, as always in HTML, the

text of the link—in this case just the value of the recipeName variable.

The l:href attribute is replaced, at runtime, with an ordinary href attribute

containing a URL that identifies the expression and its environment; this is done

using Links’ serializable continuations (see Section 2.4).

To support a similar style of page-flow for forms, Links offers the l:action

attribute for form elements. The expression contained in the l:action attribute

produces the page to display after the form is submitted. It also has access to

the form-field values via local variables: it has a variable corresponding to each

form field with an l:name attribute, as described above under “User interface” in

Section 2.4.

So, if we want to allow the user to create a new recipe by entering a name

into a form, we could code the form in Links as follows:

56

<form l:action="{createRecipe(recipeName)}">

New recipe name: <input l:name="recipeName">

</form>

This form, when submitted, will invoke the createRecipe function, passing as

its argument the string entered into the form’s single input field.

This method of form construction is useful for simple forms but is severely

limited. For one thing, the l:name fields are strictly lexically scoped—thus there

is no way to create a form fragment and reuse it within several other forms.

Similarly, there is no way to compose these forms into larger forms. A more

flexible mechanism for form construction, called “Formlets,” is also available; it

is described in detail in Chapter 4.

Branching page flow is the default in web-application design, and Links helps

write well-formed branching page-flows, without broken links, by means of this

static scoping. When linear flow is needed, Links offers an additional layer of

abstraction, as follows.

Linear page flow

Linear page-flow designs—sometimes called a “pipeline,” a “wizard,” or an ex-

perience “on-rails”—can be seen in applications that drive the user through a

sequence of forms—for example, one that collects your credit card, billing ad-

dress, and shipping address on sequential pages. The user may click other links,

such as a “help” link, or abandon the pipeline to start again at a home page,

but still we would like to structure the program around the “normal” path. (An

analogy can be drawn to the use of exceptions, which are used when we do not

want unusual conditions to dominate the shape of the code. Relegating unusual

conditions to exception handlers keeps the main line of control clean. Similarly,

writing the linear page flow as a direct line of program execution keeps the focus

on what’s most important.)

With conventional web-programming techniques, there is no way to indicate

such a normal path through the control flow of the program. Instead, a conven-

57

tional web program is structured as a set of independent page handlers, each

of which simply emits a string. Each handler must be treated as a new start-

ing point, and must re-establish any needed context when the request comes in.

In this approach, the relationship between successive pages in a pipeline is no

stronger than that of any two arbitrary pages.

Yet the idea of “web continuations,” pioneered by Queinnec [2000] and Graunke

et al. [2001a], provides a flexible static control structure to internalize web pipelines.

The idea is to extend the language with a function

sendSuspend : ((a→ Page)→ Page)→ a.

The sendSuspend function is similar to call/cc; invoking sendSuspend(f) passes

to f the current continuation, getting back an HTML page which is immediately

served to the client. This continuation can be transformed into a URL (see “Seri-

alizable continuations,” in Section 2.4) and placed in a link, and it represents the

user’s next option along the pipeline. Following the link causes the computation

to continue from the point to which sendSuspend(f) would return. This way,

when the link is clicked, the context surrounding the call to sendSuspend (in-

cluding the value of local variables, for example) is automatically re-established

and we jump directly back into the lexical scope we left when we served the page.

(As a historical note, Mawl [Atkins et al., 1999] preceded the above papers in of-

fering a facility for, essentially, sending and suspending; however, Mawl’s facility

did not treat the continuation as a first-class value, the way sendSuspend does,

and did not permit any independent links on the sent pages.)

The page that f produces may, of course, contain other links, produced by

other mechanisms; these links depart from the “normal” line of control and take

the user to some other part of the program. The link generated from the contin-

uation passed to f is only distinguished by the fact that dereferencing it causes

control to pass to the continuation of the sendSuspend call.

This feature becomes particularly useful when you want to capture a truly

dynamic control context, as when you have a subroutine that displays a page in

arbitrary control context and which needs eventually to display a link back into

58

the original context. Two examples follow.

Example: Modularizing authentication Imagine that, at a certain point in

a program, you require the user to be logged in—you need authentication—but

if she is not, you want to give her the chance to log in. However, the code you are

writing is concerned primarily with some other task, not authentication. Hence

you do not want to write special code at this point for the case where the user

still needs to log in, which would also necessitate handling detours such as failed

logins. Naturally, you’d like to write the login code once and use it for any tasks

in need of authentication: you want to modularize authentication. Concretely,

modularizing the login interaction requires passing to it a representation of the

calling context, and creating this representation may be a nuisance.

Figures 2.32–2.33 show how to use sendSuspend to solve this problem. The

heart of the code is in Figure 2.33. The loginForm routine (Figure 2.32) simply

acts as an HTML template for displaying the login form. The function authenticate

(Figure 2.33) is the entry point; it is what you call to ensure that the user is au-

thenticated. When it returns a username, you can be sure that this is the user

logged in to the current session. If a user is already logged in on the current web

session (established by cookies), then authenticate simply returns this user’s

identity. If not, it holds a conversation with the user to get the login credentials,

displaying failure pages as necessary.

By using sendSuspend, the authenticate routine automatically procures a

representation of the calling context (binding it locally to the variable return),

so there is no need to create and pass an explicit representation by hand. And of

course, the sendSuspend mechanism automatically captures any data that is in

scope in the calling context, so manually capturing these is also avoided.

59

sig loginForm : (String, Handler((username:String, pass:String)))

-> Page

fun loginForm(msg, return) {

page

<html>

<head> <style>

label {{float: left; width: 90pt; text-align: right;

display: inline; margin-right: 3pt; }}

</style> </head>

<body>

<div class="error">{stringToXml(msg)}</div>

<form l:action="{return((username=name, pass=pass))}"

method="post">

<label>Name:

<div> <input l:name="username" /></div></label>

<label>Password:

<div><input l:name="pass" type="password" /></div></label>

<input type="Submit" />

</form>

<a l:href="{main()}">Start over

</body>

</html>

}

Figure 2.32: Example use of sendSuspend (1): Login form with continuation

argument.

60

sig validAuth : (String, String) -> Bool

fun validAuth(name, pass) { # A simple authentication policy.

name == "ezra" && pass == "knockknock"

}

sig authenticate : (String) -> String

fun authenticate(msg) {

var current_user = getCookie("loginname");

if (current_user <> "") # User recognized; just return creds.

current_user

else { # User not recognized, show login page.

var (username=name, pass=pass) =

sendSuspend(fun (return) {loginForm(msg, return)});

if (validAuth(name, pass)) {

User logged in successfully; set cookie, return creds.

setCookie("loginname", name);

name

} else

User login failed; show this page again with error message.

authenticate("The password you entered was incorrect")

}

}

Figure 2.33: Example use of sendSuspend (2): Authentication loop.

61

sig sendSuspend : (((a) -> Page) -> Page) -> a

fun sendSuspend(makePage) {

escape esc in {

exit(renderPage(makePage(esc)))

}

}

sig freshResource : () -> ()

fun freshResource() {

escape esc in {

redirect("?_cont=" ++ reifyK(esc)); exit(0)

}

}

Figure 2.34: The definitions of sendSuspend and freshResource.

Example: Preventing duplicate actions OR Freshening the resource OR

Internalizing POST-redirect-GET Consider another common problem, this

time from a user’s point of view: You have just submitted a purchase form, your

credit card has been charged, and you are given a confirmation page. Later, you

decide to refresh this page—or perhaps you simply want to view the page after it

has left your browser’s cache, and so the browser needs to reload it. You expect

it to simply “refresh” the information on the page, but instead the browser asks

whether you want to re-submit the request which got you to this page, which

happens of course to be the purchase request. As a result, refreshing the in-

formation requires purchasing again—an undesirable situation. This happens

because the confirmation page was served directly in response to the purchase

request—seemingly a natural thing to do, but with awful consequences.

The POST-redirect-GET pattern [Wikipedia, 2008, Jouravlev, 2004] describes

how to avoid the problem: After performing any side-effects associated with an

HTTP POST request, the pattern advises not to serve a response page immedi-

ately, but instead, to redirect the client to a GET request on a different URL;

thus the next page the user sees is actually served in response to the GET re-

quest, and is safe to reload at any time. (An HTTP POST request is allowed to

62

have side-effects, whereas the more common GET request is required not to have

them, or more specifically, not to entail any obligations [World Wide Web Consor-

tium, 2003a].) But just as with the login-loop example we just saw, creating the

second URL (and its code entry-point) is a nuisance: it requires re-establishing

the control and data context, which may require manually marshaling the data

into the latter URL.

The freshResource routine, defined in the Links prelude, internalizes the

POST-redirect-GET pattern, using the continuation-capture and -serialization

technology, making it easy to apply.

To use freshResource, the programmer simply calls it after doing some de-

structive action (such as committing a purchase order to a database). After this,

if the user reloads the next page, this has the effect of resuming the program

from the (most recent) call to freshResource. To sketch a use:

var confirmationNum = commitPurchase(details);

freshResource();

displayConfirmation(confirmationNum)

The implementations of sendSuspend and freshResource are shown in Fig-

ure 2.34. The construct escape esc in { e } binds esc to the continuation

of the whole construct, within the expression e (the escape construct is called

let/cc in Scheme). The reifyK function serializes such a continuation as a

string. The exit function ends the HTTP request, sending its argument to

the browser as the HTTP response body. The redirect function issues to the

browser an HTTP 302 Redirect response to the given URL, thus effectively tak-

ing the user to that URL, taking effect once we call exit or exit the program.

And renderPage simply converts a Page structure to an HTML value (type Xml).

(The Page type contains HTML and acts as a container for additional data that

could be associated with the page.) The ?_cont= string is the signal for the Links

internals to treat the incoming request as one that resumes a continuation—as

opposed to starting at the beginning or performing an RPC call.

63

Web continuations: a comparison of techniques

The idea of using continuations as a language-level technique to structure web

programs has been discussed in the literature [Queinnec, 2000, 2003, Graunke

et al., 2001b, Matthews et al., 2004] and used in several web frameworks (such

as Seaside, Borges, PLT Scheme, HOP, RIFE and Jetty) and applications, such as

ViaWeb’s e-commerce application [Graham, 2001b], which became Yahoo! Stores.

Most of these take advantage of a call/cc primitive in the source language, al-

though some implement a continuation-like object in other ways. Each of these

systems creates URLs out of continuation values. The most common technique

for establishing this correspondence is to store the continuation in memory, in-

dexed by a generated unique identifier (a nonce) which is included as part of

the URL. This is the technique used by PLT Scheme, Ocsigen, and Seaside for

example.

Relying on in-memory tables makes such a system vulnerable to system fail-

ures and difficult to distribute across multiple servers. Whether stored in mem-

ory or in a database, the continuations can require a lot of storage. Every link on

every page served may correspond to one of these continuations. Since URLs can

live long in bookmarks, emails, and other media, it is impossible to predict how

long a continuation should be retained. Most of the above frameworks destroy

a stored continuation after a set period of time. Even with a modest lifetime,

the storage cost can be quite high, as each page request may generate many

continuations and there may be many requests per minute (maybe hundreds or

thousands). No pre-set timeout period seems appropriate, since a user might

reasonably leave a page open for a weekend, or bookmark it to return months

later; yet the vast majority will be clicked or discarded within moments, never to

be needed again.

The Links approach differs by following the strategy described by Graunke

et al. [2001a]. It serializes the internal structure of continuations, embedding

them in the page, albeit with reference to points in the original program. The

structure of a continuation is like a stack of these pointers together with their

64

data environments. Strictly speaking, then, continuations are not completely

serialized, since the code pointers can only be decoded together with the full pro-

gram code. But program code is vastly more stable than the data and control

contexts that arise during execution: programs normally run for some time be-

fore being upgraded.

2.9 Location-aware distributed computing

As noted, a Links thread can move fluidly between client and server. The pro-

grammer need not necessarily worry about a thread’s locality, yet can use client

and server annotations to control it when necessary. This feature amounts to a

remote-procedure-call system, where remote calls look like any other calls and

located functions look like any other functions except for their location annota-

tions.

Attaching client and server annotations has various benefits. Functions la-

beled with the server annotation never have their code transfered to the client,

so they remain secret, and also data that does not pass out of server-annotated

context will not be transferred to the client. Functions labeled client have ac-

cess to client-side facilities, such as the DOM, and will not execute using server

resources, which can be precious. Functions not annotated with a location key-

word are located everywhere and thus can be called locally from either location.

The Links team suggests that location annotations provide an appropriate level

of detail at which to manage the (moderately expensive) transfers of control be-

tween client and server.

Typical network infrastructure only permits client-driven requests—the server

cannot initiate a transaction with a browser and can only respond to requests.

Yet in Links, calls between client and server are symmetrical (either location can

call the other). This symmetry is implemented on top of the asymmetric HTTP

channel.

The implementation is efficient in the sense that session state, when it is

captured automatically, is preserved in the client only, thus requiring no server

65

Figure 2.35: Semantics and runtime behaviour of client/server annotations.

resources except when the server is actively working. This should help Links

programs to scale well from small to very large numbers of users, since server

resources are not held for idle users.

All of this is accomplished by using continuation-passing style together with

fully serializable continuations, and tunnelling requests through responses. The

technique is shown formally in Chapter 3.

Figure 2.35 shows how the call/return style of programming offered by Links

differs from the standard request/response style, and how it uses the latter to

emulate the former. The left-hand diagram shows a sequence of calls between

functions annotated with client and server. The solid line indicates the active

line of control as it enters these calls, while the dashed line indicates a control

context which is waiting for a function to return. In this example, main is a client

function which calls a server function f which in turn calls a client function g.

The semantics of this call-and-return pattern are familiar to every programmer.

The right-hand diagram shows the same series of calls as they actually oc-

cur in Links. The dashed line again indicates a control context. During the

time when g has been invoked but has not yet returned a value, the server need

66

not locally store the control context—or for that matter anything else about the

ongoing computation—though the language provides an illusion that f is “still

waiting” on the server for the value from g. Instead, the server’s state is encap-

sulated in the value k, which it sends to the client along with a specification of

the client-side call to perform, including a function reference and any arguments.

To orchestrate this interaction, the compiler translates the single source pro-

gram into two targets, one for the client and one for the server. In this compila-

tion step, non-local functions for each side are replaced by a stub function, which,

rather than implementing the function directly, implements it by means of a re-

mote procedure call (RPC) to the other location. On the client side, this is easy:

the client simply makes an HTTP request indicating the server function and its

arguments; the client-side thread then waits while the server function executes.

On the server side, the stub function does not make a new HTTP request but

instead uses the existing HTTP connection as a channel on which to communi-

cate (of course, the server-side program, to be running at all, must already be

handling a client request). So the stub simply gives an HTTP response including

a representation of the call (the callee and its arguments) and the server’s own

continuation. Upon returning in this way, all of the state of the Links program

is present at the client, so the server need not store anything more.

The client recognizes this form of return and carries out the requested RPC

call. When it has completed the call, it places a new request to the server, passing

the function result and the server continuation. The server then resumes its

computation by applying the continuation to the result.

If a top-level function definition does not have a location annotation then

both locations receive a full implementation, not a stub. Location annotations

are presently only allowed on top-level function definitions.

In short, a location annotation a ∈ {client,server} requires that “every op-

eration appearing lexically within the function must be executed at location a.”

The semantics of these annotations is formalized in Chapter 3.

67

2.10 Composable form abstraction

Ordinary HTML forms are flat and uncomposable: all fields within a form share

the same namespace, so combining two sets of fields in a form can cause clashes—

particularly so if the programmer wants to reuse a component more than once

within a form.

The Links library offers a set of composable abstractions for building forms

out of sub-forms, an abstraction called formlets. The Links system also imple-

ments syntactic sugar for constructing formlets in a concrete, HTML-like way.

Formlets are discussed in detail in Chapter 4.

2.11 Language-integrated query

As noted, Links supports querying relational databases from within the lan-

guage: suitable expressions are automatically transformed into SQL queries.

Not every expression can be translated safely to an SQL query: some have

side-effects, and others just perform computations beyond the SQL’s bourne of

expressiveness. So, we call those expressions that can be translated as “queryiz-

able.”

The original version of Links recognized queryizable expressions in an ad-hoc

fashion, using a custom algorithm. There was no easy way for programmers to

predict in advance which expressions would be translated, which could lead to

very bad performance.

Cooper et al. [2006] displayed a grammar for queryizable expressions and a

rewrite system for doing the translation; but this grammar was very conserva-

tive. The system as implemented translated some expressions beyond the gram-

mar given; and the grammar did not admit many useful constructs—such as

functional abstraction—because of the difficulty of deciding SQLizability stati-

cally in the presence of these restrictions.

At last, then, Links has implemented a source annotation which asserts that

the annotated expression ought to be queryizable—and if not, the programmer

68

gets a static error. The static analysis is now much more permissive, allowing

functional abstraction, for example.

The analysis and translation are formalized in Chapter 5.

2.12 Related work

Web frameworks and languages

The effort to simplify web development through programming abstractions is by

no means new. A plethora of server-side “web frameworks” (essentially, libraries)

exist to provide structure and common tools for making web applications. Pop-

ular examples include Ruby on Rails, Django, Catalyst, and liftweb. The level

of abstraction provided by these is modest. They sit squarely within the server

part of the web execution model. They typically offer services including URL dis-

patching (to top-level functions with no session-specific data context), functions

providing a cushion on top of the HTTP protocol (e.g. for reading/writing HTTP

request/response parameters), and data encoding (e.g. for delivery to the client

through formats like JSON).

Client-side web frameworks Libraries for JavaScript, DOM and AJAX de-

velopment have gone a long way toward simplifying the task of making dynamic

web applications. Typically, these offer a browser-independent suite of opera-

tions for things like HTTP requests, CSS, DOM tree and DOM event access and

manipulation, visual effects, periodic execution, observers, and event listening.

Such frameworks include prototype.js, mochikit, dojo, and YUI, the Yahoo! UI

library.

Research languages Pushing farther ahead, many research languages aim to

provide, as Links does, higher-level abstractions and stronger static guarantees

than what a library can offer. The following is not an exhaustive list, but aims to

cover most of those that stand out in some special way.

69

Mawl [Atkins et al., 1999] is perhaps the first language system to abstract

from HTTP request/response interactions to a more structured control flow across

pages. A Mawl session is a sequential program where certain operations emit a

form and continue the program after form submission. The Mawl system serial-

izes program state (which includes mutable session-specific variables) between

requests, using a session identifier embedded in each page to track this.

The <bigwig> project [Brabrand et al., 2002, 1999] is another early project

to develop a web-centric programming language, also following a session-centric

approach. In <bigwig>, session state is held in a server-side thread kept running

for each session (this contrasts with the continuation-storing approach seen in

most of the other systems). It is difficult to see how this approach would work

in a typical load-balanced server environment (see Section 2.5). Within a par-

ticular <bigwig> session, every HTML page is served at the same URL, so that

whatever the user does within that session she always sees a “most recent” state

of the session; due to this design, <bigwig> does not support many common web

interactions—at least not without extensive coding—for example, those where

the user uses the browser’s back button, opens multiple windows onto the site,

or sends a URL to a friend. However, <bigwig> pioneers a number of novel,

interesting features: a domain-specific language for form validation, called Pow-

erForms [Brabrand et al., 2000], and a temporal-logic-based language for control-

ling the synchronization between concurrent threads; this powerful language al-

lows expressing a variety of interesting synchronization patterns. The <bigwig>

system also incorporates HTML syntax and statically verifies the validity under

HTML 4 (not an XML format) of the documents it serves.

The Java-based language JWIG [Christensen et al., 2003], a successor to

<bigwig>, follows that system in its session-centric model, also using running

threads to manage client sessions.

WASH/CGI [Thiemann, 2002, 2005] is a Haskell library for web development

that, among many other things, supports designing linear page-flow. It does

this using a monad which, when generating a page, embeds the history of the

session. This allows it to replay the session when a subsequent request comes in,

70

resuming at the point where the page was issued. For data persistence, WASH

provides a transactional interface to a relational database as well as its own

data-persistence model, which stores native Haskell values. WASH supports

form design and composition by offering input-field primitives and field-tupling

combinators which act as input fields themselves.

The PLT Scheme webserver pioneered the definition of linear page-flow through

continuation capture [Graunke et al., 2001c], using the send/suspend primitive

on which Links’ sendSuspend was based. PLT Scheme also comes with an imple-

mentation of the formlet abstraction, described in Chapter 4.

Ocsigen [Balat, 2006], is an OCaml web-programming framework; it asso-

ciates URLs with closures, using the server-side storage technique. It has a

sophisticated URL dispatcher with a library of routines that associate closures

with URL path-parts, thereby giving programmers some control over the text of

URLs (the path part of a URL is, loosely, the part following the domain name).

This associates a path with a program point; the data environment needed to

represent the closure is attached automatically to the request. This dispatcher

library provides several ways to dynamically overlay the set of registered paths;

for example, it supports establishing a URL path for a particular user session.

HOP [Serrano et al., 2006], a Scheme-like language, compiles to JavaScript

and permits declaring server-based “services,” analogous to Links’ server-annotated

functions, as well as an asynchronous notification service which allows events at

the server to signal to the client. HOP has an interesting “dual evaluation” strat-

egy with two “strata” (main, or server, and GUI, or client). HOP evaluates the

program once at the server to produce a web page which is sent to the client.

Quasi-quoted code within this page, comprising the GUI stratum, is compiled to

JavaScript. The two strata can syntactically intermingle, so main-stratum code

embedded in the GUI stratum is evaluated to become a value that the GUI stra-

tum can use directly. HOP services are main-stratum functions, to be run at the

server, which the GUI stratum can invoke.

The functional logic programming language Curry has a library called WUI

(for Web User Interfaces) which allows constructing composable HTML forms,

71

which can include validation conditions on the input [Hanus, 2006, 2007]. The

validation conditions can be compiled to the client for more efficient testing, and

are also evaluated on the server since clients are not trusted.

The iTasks library for the language Clean supports creating a certain type of

web-based interface. The objects called iTasks represent work flows (which are

loosely related to linear page-flows in our sense) and admit combinators, for ex-

ample, to set them in parallel or in sequence. iTasks work flows support combina-

tions that page-flows do not, for example where two user sessions synchronize—

each must complete parts of the work in order for both to continue together.

The haXe language (http://haxe.org/) is a statically-typed web-oriented

language which compiles to several relevant targets: JavaScript, Flash, and

PHP, to name a few. It provides a convenience library for making network

connections, to aid in writing applications with client–server interaction, rather

than an integrated, language-based approach.

Work by Petříček and Syme [2007] extends the language F] to provide location-

aware distribution. This work uses monads to capture the continuation at each

point, which allows a runtime passing of continuations between client and server.

The typing of monadic computations also forces a location constraint consistently

throughout a monadic code block.

Flapjax [Meyerovich, 2007] departs from all the above, taking a rather differ-

ent approach to interactivity, following functional-reactive programming [Elliott

and Hudak, 1997]. A Flapjax program defines a single page as a time-varying

function of time-varying signals, such as the state of the keyboard and mouse

or even network-fetched data. In this model it is easy to have various indicators

that continually read as functions of some other controls, without worrying about

the mechanics of updating them.

The Ur/Web system, based on the Ur language by Chlipala [2008] provides

XML quasiquotation syntax and statically-checked branching page flow. It di-

rectly embeds SQL syntax for accessing databases. For describing the client-

side behavior of an application, it uses functional-reactive programming. It pro-

vides seamless interaction between client and server using a “location-oblivious”

72

syntax—location annotations are not required or allowed.

The issue of page-flow design is an implicit, rather than explicit, theme of

much of this research. In Mawl, WASH, <bigwig>, and JWIG, linear page-flow is

the default, while in the others surveyed here, branching page-flow is the default.

In the former set, the programmer must explicitly branch when she wants to offer

the user a choice of outward links. In the latter set, re-establishing context after

a page transition is the more difficult thing to code.

Another theme is client-server integration. Some of the languages provide in-

tegration in a location-oblivious way (Ur/Web) and some with location-awareness

(HOP, F]). There are also those that generate client and server code without

language-based integration (haXe) and those that target only the client or only

the server (Mawl, <bigwig>, JWIG, Ocsigen, WASH, Flapjax).

Ocsigen, WASH, and JWIG all validate their output pages as XHTML.

2.13 Conclusion

Links has a set of unique or unusual features which fit together to create a novel

web-programming experience. Most significantly, it advances a “web execution

model” of programming, an environment where user events, private server-side

logic, and back-end services (such as data persistence) are all immediately avail-

able to one integrated program, thus ameliorating the notorious impedance mis-

match.

Amongst other things, it offers specialized annotations for client–server in-

teraction, a library and syntactic extension for client-side forms programming,

and language-integrated query with statically-detectable queryizability.

The next chapters present specific technical contributions to each of these

latter three functional areas—that is, to the technology of web-centric program-

ming.

73

Chapter 3

The RPC Calculus

(This chapter represents sole work by the author, advised by Philip Wadler.)

3.1 Introduction

Designing a web server requires thinking carefully about user state and how to

manage it. Unlike a desktop application, which deals with one user at a time,

or a traditional multi-user networked system, whose environment is more con-

trolled, even a modest web system can expect to deal with tens or hundreds of

thousands of users in a day, each one can have multiple windows open on the

site simultaneously, and these users can disappear at any time without notifying

the server. This makes it infeasible for a web server to maintain state regarding

a user’s session. The mantra of web programming is: Get the state out!—get it

out of the server and into the client. An efficient web server will respond to each

request quickly and then forget about it even quicker.

Nonetheless, several recent programming language designs [Murphy, 2007,

Neubauer and Thiemann, 2005, Neubauer, 2007] allow the programmer the illu-

sion of a persistent environment encompassing both client and server; let us call

these “location-aware languages.” This allows the programmer to move control

back and forth freely between client and server, using local resources on either

side as necessary, but still expressing the program in one language. This chapter

74

shows how to implement a location-aware language in an environment with a

stateful client and a stateless server.

Murphy et al. [2004] introduced a location-aware core calculus, Lambda 5,

and Murphy [2007] built upon this a full-fledged programming language, ML5,

also showing how to compile it to separate code for client and server. Neubauer

and Thiemann [2005] also introduced a variant of ML with location annotations

and showed how to perform a splitting transformation to produce code for each

location. However, each of these works relied on concurrently-running stateful

peers. The present work is novel in implementing a location-aware language on

a stateless-server substrate.

The technique of this chapter involves three essential steps: defunctional-

ization à la Reynolds, CPS translation, and a trampoline [Ganz et al., 1999]

that allows tunnelling server-to-client requests within server responses. CPS

and defunctionalization were used by Matthews et al. [2004] to implement lin-

ear page-flow design (Section 2.8). This chapter adds a trampoline to the toolbox,

supporting the distinct problem of implementing RPC calls in a location-aware

language.

A version of this feature is built into the Links language [Cooper et al., 2006].

The current Links version is limited in that only calls to top-level functions can

pass control between client and server. This chapter formalizes the implemen-

tation and shows how to relax the top-level-function restriction. This has some

impact on the compiler: the current, limited version requires just a CPS trans-

lation and a trampoline; defunctionalization is needed in implementing nested

remote-function definitions.

This chapter This chapter presents a simple higher-order λ-calculus enriched

with location annotations, allowing the programmer to indicate the location where

a fragment of code should execute. The semantics of this calculus clarifies where

each computation step is allowed to take place. This can be seen as a semantics

of a language with Remote Procedure Call (RPC) features built in.

It then gives a translation from this calculus to a first-order abstract ma-

75

chine that models an asymmetrical client–server environment, and show that

the translation preserves the locative semantics of the source calculus.

As a stepping stone to the full translation, we formally define defunctional-

ization. By isolating this phase of the larger translation, this aims to clarify the

notation and formal techniques that will be used in the full translation. While

there are many compact definitions of CPS translations in the literature, no such

compact and formal definition of defunctionalization has appeared; this chapter

gives a complete formal definition of defunctionalization in eleven lines.

76

Syntax λsrc

constants c
variables x

terms L, M, N ::= LM |λx.N | x | c
values V ,W ::= λx.N | x | c

Semantics M ⇓V

V ⇓V (VALUE)

L ⇓λx.N M ⇓W N{W /x} ⇓V

LM ⇓V
(BETA)

Figure 3.1: Source language λsrc, a higher-order λ-calculus.

3.2 Defunctionalization

Source calculus, λsrc

Figure 3.1 shows an entirely pedestrian call-by-value λ-calculus, called λsrc, whose

semantics is defined by a big-step reduction relation M ⇓V , stating that term M

reduces to value V . We write N{V /x} for the capture-avoiding substitution of a

value V for the variable x in the term N, and N{V1/x1, . . . ,Vn/xn} for the simulta-

neous capture-avoiding substitution of each Vi for the corresponding xi. We let σ

range over these substitutions. We identify α-equivalent terms.

First-order machine

The defunctionalized machine, DM, defined in Figure 3.2, is a first-order abstract

machine, in contrast to the λsrc calculus which allowed arbitrary expressions in

the function position of an application. In DM, terms, ranged over by L, M,

and N, are first-order; they are built from constants c, variables x, constructor

applications F(~M), function applications f (~M) and case expressions case M of A .

A list A of case alternatives is well-formed if it uniquely maps each name.

77

Syntax DM

variables x, y, z
function names f , g

constructors F,G
values V ,W ,U ::= c | x |F(~V)
terms M, N ::= c | x |F(~M) |

f (~M) | case M of A

alternative sets A a set of A items
case alternatives A ::= F(~x)⇒ M

eval. contexts E ::= [] | f (~V ,E, ~M) |
F(~V ,E, ~M) | case E of A

function def. D ::= f (~x)= M
definition set D ::= letrecD and · · · and D

Semantics M −→D N

E[f (~V)] −→D E[M{~V /~x}] if (f (~x)= M) ∈D

E[case (F(~V)) of A] −→D E[M{~V /~x}] if (F(~x)⇒ M) ∈A

Figure 3.2: First-order target, DM (the Defunctionalized Machine).

The machine also uses a set D of function definitions. Each has the form

f (~x)= M, defining a function called f taking parameters~x which are then bound

in the function body M. A definition set is well-formed if it uniquely defines each

name. The definitions are mutually recursive, so the scope of each definition

extends throughout all the other definitions as well as the term under evaluation.

The semantics is defined as a small-step reduction relation M −→D N stating

that the term M reduces to the term N in the context of definition-set D. The

relation −�D is the reflexive, transitive closure of −→D , with the definitions D

held fixed through the reduction sequence.

78

�λx.N� = pλx.Nq(~y) where ~y= FV(λx.N)
�x� = x
�c� = c

�LM� = apply(�L�, �M�)

coll f LM = f (LM)∪ coll f L ∪ coll f M
coll f λx.N = f (λx.N)∪ coll f N
coll f V = f (V) if V 6=λx.N

�M�top = letrec apply(fun, arg)= case fun of �M�fun

�λx.N�fun,aux = {pλx.Nq(~y)⇒�N�{arg/x}} where ~y= FV(λx.N)
�M�fun,aux = {} if M 6=λx.N

�M�fun = coll �−�fun,aux M

Figure 3.3: Defunctionalization.

Defunctionalization

Defunctionalization is a translation from the terms of λsrc to the terms and

definition-sets of DM; it is defined in Figure 3.3. From a term M we compute

a defunctionalized term �M� and a corresponding definition set, �M�top. Let arg

be a special reserved variable name not appearing in the source program. The

coll function is used by �M�top to traverse a term: it applies a function f to each

subterm of its argument, collecting the results.

A special feature of our translation is the use of an injective function that

maps source terms into the space of constructor names. We write pMq for the

name assigned to the term M by this function. One example of such a function

is the one that collects the names assigned to immediate subterms and uses a

hash function to digest these into a new name. (In this case, the issue of possible

hash collisions would have to be treated delicately.) Previous formalizations of

79

�F(~M)�−1
D = λx.(�N{x/arg}�−1

D){�~M�−1
D /~y}

if (F(~y)⇒ N) ∈ cases(apply,D), where x fresh for ~y,~V
�x�−1

D = x
�c�−1

D = c
�apply(L, M)�−1

D = �L�−1
D �M�−1

D

Figure 3.4: A reverse translation for defunctionalization.

defunctionalization treat the abstractions as already carrying labels; this chap-

ter allows any injective function, which might in fact depend on context.

However, in a system like Links, it is essential to have a stable labeling,

that is, one which always gives the same label for a given term, regardless of

its context. This would not be the case for, say, a serial-numbering algorithm,

which assigns labels serially as it traverses a term. With a stable labeling, RPC

calls are robust even if the server has to reboot while the client is working, or if

successive calls enter at different server machines in a server cluster, or even if

an unrelated part of the program changes between calls.

We also use a reverse translation, �−�−1, a retraction of �−�, defined in Fig-

ure 3.4. Here �M�−1
D

denotes the retraction of a DM term M in the context of

definitions D. The reverse translation is undefined when the definition-set D

does not define all the constructors appearing in M. We lift the reverse transla-

tion to lists of values and to substitutions:

σ= {V1/x1, . . . ,Vn/xn}

�σ�−1
D

= {�V1�−1
D

/x1, . . . ,�Vn�−1
D

/xn}

To extract the alternatives of case-expressions from function bodies, we use a

function cases, defined as follows.

Notation is carefully (ab)used when we write things like �~M�−1 to indicate the

vector obtained by applying a translation �−�−1 to each member of ~M in place.

Definition. Define a meta-function cases that returns the branches of a given

80

function when that function is defined by case-analysis. Formally, define cases

by

(f (x,~y)= case fun of A) ∈D

cases(f ,D)=A

This completes the definition of the reverse translation �−�−1.

The central claim of this section is that the translation is sound and complete:

the DM correctly simulates every λsrc computation. Before getting to the proof

we establish some preliminaries.

During reduction we may lose subterms which would have given rise to de-

functionalized definitions; thus the reduction of a term does not have the same

definition-set as its ancestor. Still, all the definitions it needs were generated by

the original term; we formalize this as follows.

Definition (Definition containment). We say that a definition set D contains D′,

written D ÊD′, iff

cases(apply,D)⊇ cases(apply,D′).

Next, the function �−�−1− inverts the functions (�−�,�−�top), as follows.

Observation (Retraction). If D Ê �M�top then ��M��−1
D

= M. Note that the for-

ward translation replaces each variable bound by a λ-abstraction with the vari-

able arg, and the reverse translation generates fresh names when generating ab-

stractions. This still produces an equality, since we identify α-equivalent terms.

Contrariwise, ��M�−1
D

� does not always equal M, because �−�−1− is not injec-

tive. Injectivity fails when translating a term F(~M), at the point where we per-

form the substitution, because many substitutions can give rise to the same term.

The reverse translation commutes with substitution, as follows.

Lemma 1 (Substitution–Reverse translation). Given definition-set D, term M

and value V , we have �M{V /x}�−1
D

= �M�−1
D

{�V �−1
D

/x}.

81

Proof. By induction on the structure of M. The proof of each case is a simple mat-

ter of pushing the substitutions down through the terms, applying the inductive

hypothesis, and pulling them back up the terms.

Corollary. The reverse translation commutes with substitutions. Given definition-

set D, term M and substitution σ, if D Ê �M�top, we have �Mσ�−1
D

= �M�−1
D

�σ�−1.

Observation. If D Ê �M�top then D Ê �M′�top for any subterm M′ of M.

Lemma 2 (Closure, definition sets). Given D in the image of �−�top and N such

that F(~y)⇒�N�{arg/x} is in cases(apply,D), we have D Ê �N�top.

Proof. Let M be the term such that D = �M�top. Each element of cases(apply,D)

that has a right-hand side of the form �N�{arg/x} is produced by a term λx.N, a

subterm of M. As N is a subterm of M, then, D Ê �N�top.

Corollary. Given D in the image of �−�top and N ′ such that F(~y) ⇒ N ′ is in

cases(apply,D), we have that �N ′�−1
D

is defined.

82

Correctness of the translation from λsrc to DM

The correctness comes in two halves: soundness and completeness.

First we will show that DM correctly simulates λsrc: the translation of a λsrc

term reduces in DM to a value which maps back to the value of the original term.

The soundness lemma uses a common trick used when relating big- and

small-step semantics, of generalizing the statement to handle arbitrary substi-

tutions, which facilitates the induction.

In proofs, the interjection huzzah! marks the end of a case in a proof by cases;

at this point any metavariables introduced for that case go out of scope.

Lemma 3 (Soundness). Given a λsrc term M and a DM value V ′, substitution σ

and definitions D with D Ê �M�top,

�M�σ−�D V ′ implies M�σ�−1
D ⇓ �V ′�−1

D

Proof. By induction on the length of the reduction �M�σ−�V ′.

Throughout all the reduction sequences, the definition set D stays fixed.

We take cases on the structure of the term M.

CASE V . The reduction is of zero steps, �V �σ−� �V �σ, and ��V �σ�−1
D

= V �σ�−1
D

.

The judgment V �σ�−1
D

⇓V �σ�−1
D

is by VALUE. huzzah!

CASE LM. By hypothesis, �LM�σ−�V ′. Recall that

�LM�σ= apply(�L�σ, �M�σ).

It must be that �L�σ and �M�σ each reduce to some value, for if not the

reduction would get stuck or diverge, when we know it reduces to V ′, and

by the same token �L�σ must reduce to a constructor application F(~V), or

it would make the whole term stuck. Let W be the value to which �M�σ
reduces. Let x be a fresh variable and let N and ~y be such that (F(~y) ⇒
�N�{arg/x}) ∈ cases(apply,D). (We know the body of the case for F has the

form �N�{arg/x} because it is in the image of the translation �−�top.) As

such we have

�F(~V)�−1
D =λx.N{�~V �−1

D /~y}.

83

The reduction breaks down as follows:

apply(�L�σ, �M�σ)

−� apply(F(~V), W)

−� �N�{~V /~y,W /x}

−� V ′

Now we apply the inductive hypothesis three times. The inductive hypoth-

esis applies because (1) the reductions used are shorter than the present

one, and (2) the definitions in �L�top, �M�top and �N�top are all contained

in D. The definitions �L�top and �M�top are contained because they are

subterms, and �N�top is contained by dint of Lemma 2.

From �L�σ−�F(~V) we get

L�σ�−1
D ⇓λx.N{�~V �−1

D /~y}.

From �M�σ−�W we get

M�σ�−1
D ⇓ �W�−1

D .

From �N�{~V /~y,W /x}−�V ′ we get

N{�~V �−1
D /~y,�W�−1

D /x} ⇓ �V ′�−1
D .

By the freshness of x, we can separate the substitutions:

N{�~V �−1
D /~y}{�W�−1

D /x} ⇓ �V ′�−1
D .

The judgment (LM)�σ�−1
D

⇓ �V ′�−1
D

follows by BETA. huzzah! ä

The above lemma can be summarized by this diagram, which shows that

whatever the translation of a λsrc term reduces to, that value encodes the “correct

answer” as given by the semantics of λsrc (dotted lines indicate relationships

84

guaranteed by the lemma when the solid lines are present):

M�σ�−1
D

⇓- �V ′�−1
D

�M�σ

6

−�D - V ′

6

We could show that M′σ−�D V ′ implies �M′σ�−1
D

⇓ �V ′�−1
D

but this would not

give a nice symmetry between this and the following lemma.

Next we see that every λsrc computation can be simulated by one in DM.

Lemma 4 (Completeness). Given any DM term M′, definitions D and λsrc value V ,

�M′�−1
D ⇓V implies there exists V ′ with �V ′�−1

D =V and M′ −�D V ′.

Proof. By induction on the derivation �M′�−1
D

⇓V . Take cases on the final step of

the derivation:

CASE VALUE. The high-level reduction is V ⇓ V . The initial low-level term

must be a value, V ′, in order to reverse-translate to a value. Then the DM

reduction is of zero steps: V ′ −�V ′. huzzah!

CASE BETA. Recall the rule:

L ⇓λx.N M ⇓W N{W /x} ⇓V

LM ⇓V

Because the starting DM term maps to LM under �−�−1
D

, it must be of the

form apply(L′, M′) with �L′�−1
D

= L and �M′�−1
D

= M.

By IH we have normal forms

L′ −�D F(~V) M′ −�D W ′

satisfying

�F(~V)�−1
D

= λx.N �W ′�−1
D

= W

85

with N ′ such that

(F(~y)⇒ N ′) ∈ cases(apply,D)

and �N ′{x/arg}�−1
D {�~V �−1

D /~y}= N (def. of �F(~V)�−1
D

),

Therefore

�N ′{~V /~y}{x/arg}�−1
D = N and

�N ′{~V /~y}{x/arg}�−1
D {�W ′�−1

D /x} = N{W /x}

= �N ′{~V /~y}{x/arg}{W ′/x}�−1
D

And so, by the IH,

N ′{~V /~y}{W ′/arg} = N ′{~V /~y}{x/arg}{W ′/x}−�D V ′

with �V ′�−1
D =V .

So the term reduces as follows:

apply(L′, M′) −�D apply(F(~V),W ′)

−→D N ′{~V /~y}{W ′/arg}

−�D V ′

which was to be shown. huzzah! ä

The above lemma can be summarized with this diagram, which shows that

the evaluation of a term in the high-level language can be simulated by trans-

lating the term to the low-level language, reducing it there, and translating it

back.

�M′�−1
D = M

⇓ - V = �V ′�−1
D

M′

6

−�D - V ′

6

(The existence of M′ with �M′�−1
D

= M comes from the surjectivity of �−�−1.)

86

As the diagram suggests, it is true that M ⇓ V implies there exists V ′ such

that �M� −�D V ′ with �V ′�−1
D

= V , but Lemma 4 makes a stronger statement

which is more amenable to the inductive proof given.

We cannot show that M ⇓V implies �M� −�D �V � because the �−� translation

picks out just one of the low-level encodings for V . This may not be the version

that �M� reduces to. By inverting the relationship on the value end of the re-

duction, we “forget” the differences between them and arrive at the desired λsrc

value.

Proposition 1 (Correctness). For any closed λsrc term M, value V and defini-

tions D = �M�top,

M ⇓V ⇐⇒ exists V ′ s.t. �M� −�D V ′ and �V ′�−1
D =V

Proof. The (⇐) direction follows immediately from Lemma 3. To show the (⇒)

direction from Lemma 4 we need to show that the given M has M′ with �M′�−1
D

=
M. Construct M′ = �M� and the needed relationship follows from the retraction.

87

3.3 The RPC Calculus

The RPC calculus, λrpc, is defined in Figure 3.5. This calculus extends the pedes-

trian calculus of Section 3.2 by tagging λ-abstractions with a location; we use the

set of locations {c,s}, because we are interested in the client-server setting, but

the calculus would be undisturbed by any other choice of location set.

The annotation on a λ-abstraction indicates the location where its body must

execute. Thus an abstraction λcx.N represents a function that, when applied,

would evaluate the term N at the client (c), binding the variable x to the function

argument as usual. Constants are assumed to be universal, that is, all locations

treat them the same way, and they contain no location annotations.

The semantics is defined by a big-step reduction relation M ⇓a V , which is

read, “the term M, evaluated at location a, results in value V .” The reader can

verify that the lexical body N of an a-annotated abstraction λax.N is only ever

evaluated at location a, and thus the location annotations are honored by the

semantics. During evaluation, however, that body may invoke other functions

that evaluate at other locations.

Again we write N{V /x} for the capture-avoiding substitution of a value V for

the variable x in the term N. We assume terms are equal under α-equivalence.

The annotation a on λax.N has no effect on the binding behavior of names.

Client/server machine

Our target abstract machine models a pair of interacting agents, a client and

a server, that are each first-order computing machines. Figure 3.6 defines the

machine, called CSM.

Being a first-order machine, the application form f (~M) is n-ary and allows

only a function name, f , in the function position. The machine also introduces

constructor applications of the form F(~M), which can be seen as a tagged tuple.

Constructor applications are destructed by the case-analysis form case M of A .

A list A of case alternatives is well-formed if it defines each name only once.

88

Syntax λrpc

constants c
variables x
locations a, b ::= c | s

terms L, M, N ::= LM |V
values V ,W ::= λax.N | x | c

evaluation contexts E ::= [] |V E | EN

Semantics (big-step reduction) M ⇓a V

V ⇓a V (VALUE)

L ⇓a λ
bx.N M ⇓a W N{W /x} ⇓b V

LM ⇓a V
(BETA)

Figure 3.5: The RPC calculus, λrpc.

The client may make requests to the server, using the form req f (~M). The

server cannot make requests and can only run in response to client requests.

Note that the req f (~M) form has no meaning in server position; it may lead to a

stuck configuration.

A configuration K of this machine comes in one of two forms: a client-side

configuration (M; ·) consisting of an active client term M and a quiescent server

(represented by the dot), or a server-side configuration (E; M) consisting of an

active server term M and a suspended client context E, which is waiting for the

server’s response. Although the client and server are in some sense independent

agents, they interact in a synchronous fashion: upon making a request, the client

blocks waiting for the server, and upon completing a request, the server is idle

until the next request.

Reduction takes place in the context of a pair of definition sets, one for each

agent, thus the reduction judgment takes the form K −→C ,S K ′. Each defini-

tion f (~x) = M defines the function name f , taking arguments ~x, to be the term

89

Syntax

function names f , g
constructor names F,G

values U ,V ,W ::= x | c |F(~V)
terms L, M, N, X ::= x | c | f (~M)

|F(~M) | case M of A

| req f (~M)
alternative sets A a set of A items

case alternatives A ::= F(~x)⇒ M
evaluation contexts E ::= [] | f (~V ,E, ~M)

|F(~V ,E, ~M)
| case E of A

| req f (~V ,E, ~M)
configurations K ::= (M; ·) | (E; M)

function definitions D ::= f (~x)= M
definition set D,C ,S ::= letrecD and · · · and D

continuation values J,K ::= k |App(V ,K) |F(~V ,K)

Semantics
K −→C ,S K ′

Client:

(E[f (~V)]; ·) −→C ,S (E[M{~V /~x}]; ·) if (f (~x)= M) ∈C

(E[case (F(~V)) of A]; ·) −→C ,S (E[M{~V /~x}]; ·) if (F(~x)⇒ M) ∈A

Server:

(E; E′[f (~V)]) −→C ,S (E; E′[M{~V /~x}]) if (f (~x)= M) ∈S

(E; E′[case (F(~V)) of A]) −→C ,S (E; E′[M{~V /~x}]) if (F(~x)⇒ M) ∈A

Communication:

(E[req f (~V)]; ·) −→C ,S (E; f (~V))
(E; V) −→C ,S (E[V]; ·)

Figure 3.6: Definition of the Client/Server Machine (CSM).

90

M. The variables ~x are thus bound in M. A definition set is only well-formed if

it uniquely defines each name. This does not preclude the other definition set, in

a pair (C ,S), from also defining the same name.

The reflexive, transitive closure of the relation −→C ,S is written with a double-

headed arrow −�C ,S , where the definition-sets are fixed throughout the se-

quence.

Observation. CSM reduction steps on the server side can be made in any eval-

uation context, encompassing both sides of the client/server divide:

([]; M)−� ([]; N) implies (E;E′[M])−� (E;E′[N]).

This is a direct consequence of the reduction rules, which are already defined in

terms of evaluation contexts.

Lemma 5 (Substitution-Evaluation). For any substitution σ, we have

(M; ·)−�C ,S (N; ·) implies (Mσ; ·)−�C ,S (Nσ; ·) and

(E; M)−�C ,S (E; N) implies (E; Mσ)−�C ,S (E; Nσ).

Proof. We show that K −→C ,S K ′ implies K σ−→C ,S K ′σ. The result for −�C ,S

then follows by induction on the reduction sequence.

Whether K is of the form (M; ·) or (E; M), decompose M into E′[M′]. The

proposition then follows by induction on M′. The proof of each case is a sim-

ple matter of pushing the substitutions down through the terms, applying the

inductive hypothesis, and pulling them back up the terms.

Translation from λrpc to CSM

Figures 3.7–3.10 give a translation from the client-server λrpc to CSM. Figure 3.7

gives term-level translations (−)◦, (−)∗ and (−)†, which construct values, client

terms, and server contexts, respectively. The (−)† translation produces a context,

which is expected to be filled by a continuation (which is a server value), so we

91

(−)◦− : Vλrpc →VCSM

(λax.N)◦ = pλax.Nq(~y) ~y= FV(λax.N)
x◦ = x
c◦ = c

(−)∗ : Mλrpc → MCSM|c

V∗ = V ◦

(LM)∗ = apply(L∗, M∗)

(−)†(−) : Mλrpc →VCSM → MCSM|s

V †[] = cont([], V ◦)
(LM)†[] = L†(pMq(~y, [])) where ~y= FV(M)

Figure 3.7: Term-level translations from λrpc to CSM.

will normally write N†K for the translation of N to a server term with continua-

tion K . The functions (−)∗ and (−)†(−) are only defined for λrpc client and server

terms, respectively. Functions �−�c,top (Fig. 3.9) and �−�s,top (Fig. 3.10) translate

a source term to a definition set, making use of the generic traversal function coll

(Fig. 3.8), which computes the union of the images under f of each subterm of a

given term.

The translated terms make use of function definitions for apply, tramp and

cont, as produced by �−�c,top and �−�s,top. Intuitively, the apply functions han-

dle all function applications, the cont function handles continuation application,

and tramp is the trampoline, which tunnels server-to-client requests through re-

sponses. For this translation, let arg and k be special reserved variable names

not appearing in the source program. The function coll f M computes the union

of the image under f of each subterm N of M.

The bodies of the two apply functions will have a case for each abstraction

appearing in the source term. Each location will have a case for both locations’

abstractions; for its own abstractions it gets a full definition but for the other’s

abstractions the case will be a mere stub. This stub dispatches a request to the

92

coll : (Mλrpc → {α})→ Mλrpc → {α}

coll f (LM) = f (LM)∪ coll f L ∪ coll f M

coll f (λax.N) = f (λax.N)∪ coll f N

coll f V = f (V) if V 6=λax.N

Figure 3.8: Generic traversal function for λrpc terms.

other location, to apply the function to the given arguments. The cont function

is defined only on the server, because it arises from the CPS translation, which

is only applied on the server side; it has a case for each continuation produced

by CPS. This includes one for evaluating the argument subterm of each server-

located application, one called App for applying a function to an argument, and

one called Fin which returns a value to the client.

Recall the classic CPS translation for applications:

(LM)cpsK = Lcps(λ f . Mcps(λx. f xK)).

The outer underlined term corresponds to a continuation that is defunctionalized

as pMq. The inner one is defunctionalized as App. Finally, recall that CPS

always requires a “top-level” continuation, usually λx.x, to extract a value from

a CPS term; this corresponds to Fin.

The tramp function implements the trampoline. Its job is to field responses

from the server, determine whether they indicate function returns or server-to-

client calls, and dispatch them as necessary. The protocol used by tramp is as

follows: when the client first needs to make a server call, it makes a request

wrapped in tramp. The server will either complete this call itself, without any

client calls, or it will have to make a client call along the way. If it needs to make a

client call, it returns a specification of that call as a value Call(fun,arg,k), where

fun and arg specify the call and k is the current continuation. The tramp func-

tion recognizes these constructions and evaluates the necessary terms locally,

then places another request to the server to apply k to whatever value resulted,

93

�−�c,top : Mλrpc →DCSM

�M�c,top = letrec apply(fun, arg)= case fun of �M�c,fun

and tramp(x)= case x of

|Call(f , x, k)⇒
tramp(req cont (k, apply(f , x)))

| Return(x)⇒ x

�λcx.N�c,fun,aux = {pλcx.Nq(~y)⇒ N∗{arg/x}} where ~y= FV(λx.N)

�λsx.N�c,fun,aux = {pλsx.Nq(~y)⇒ tramp(req apply (pλsx.Nq(~y), arg, Fin()))}

where ~y= FV(λx.N)

�M�c,fun,aux = {} if M 6=λax.N

�M�c,fun = coll (�−�c,fun,aux) M

Figure 3.9: Definition construction, translation from λrpc to CSM (client).

�−�s,top : Mλrpc →DCSM

�M�s,top = letrec apply(fun, arg, k)= case fun of �M�s,fun

and cont(k, arg)= case k of

| �M�s,cont

| App(fun, k)⇒ apply(fun, arg, k)
| Fin()⇒Return(arg)

�λcx.N�s,fun,aux = {pλcx.Nq(~y)⇒Call(pλcx.Nq(~y), arg, k)}
where ~y= FV(λx.N)

�λsx.N�s,fun,aux = {pλsx.Nq(~y)⇒ (N†k){arg/x}} where ~y= FV(λx.N)
�M�s,fun,aux = {} if M 6=λax.N

�M�s,fun = coll (�−�s,fun,aux) M

�LM�s,cont,aux = {pMq(~y,k)⇒ M†(App(arg,k))} where ~y= FV(M)
�N�s,cont,aux = {} if N 6= LM

�M�s,cont = coll (�−�s,cont,aux) M

Figure 3.10: Definition construction, translation from λrpc to CSM (server).

94

again wrapping the request in tramp. When the server finally completes its orig-

inal call, it returns the value as the argument of the Return constructor; the

tramp function recognizes this as the result of the original server call, so it sim-

ply returns x. As an invariant, the client always wraps its server-requests in a

call to tramp. This way it can always handle Call responses.

To relate the two calculi, we again use a reverse translation, now from CSM

to λrpc, given in Figure 3.11. All of the functions used in this translation are

parameterized on the definition sets C and S .

The function (−)•
C ,S takes CSM values to λrpc values. Next (−)?

C ,S

and (−)‡
C ,S take client-side and server-side CSM terms (respectively) to λrpc

terms. And (−)$
C ,S takes CSM values representing continuations to λrpc eval-

uation contexts.

These functions are defined only on CSM terms and definitions in the range

of the corresponding forward translation. Moreover M‡
C ,S and M?

C ,S are not

defined unless both definition sets C and S define all the constructors appearing

in M.

The last case of (−)$ in Figure 3.11 is written using the assumption that the

case defining each constructor F is in the image of the translation. It might seem

that a more straightforward definition would simply apply (−)‡ to the right-hand

side of the definition of F; but if that right-hand side is of the form M†(App(arg,k)),

which is the only case we care about, then the result comes out as written here,

which is simpler to read and work with.

As before, to extract the alternatives of case-expressions from function bodies,

we use a function cases.

Definition. Define cases as follows:

cases(f ,D)=A iff (f (x,~y)= case x of A) ∈D.

This definition relies on the fact that each of our special functions dispatches on

the first of its arguments, whether that be the argument fun for apply, or k for

cont; the dispatching argument is conveniently always the first.

95

(−)•−,− : VCSM →DCSM →DCSM →Vλrpc

c•C ,S = c
x•C ,S = x

(F(~V))•C ,S = λcx.(N{x/arg})?C ,S {~V •
C ,S /~y}

if (F(~y)⇒ N) ∈ cases(apply,C) and N 6= tramp(req · ·)
where x fresh for ~y,~V

(F(~V))•C ,S = λsx.(N{x/arg})‡
C ,S {~V •

C ,S /~y}

if (F(~y)⇒ N) ∈ cases(apply,S) and N 6=Call(·, ·, ·)
where x fresh for ~y,~V

(−)?−,− : MCSM|c →DCSM →DCSM → Mλrpc

V?
C ,S = V •

C ,S

(apply(L, M))?C ,S = L?C ,S M?
C ,S

(−)‡−,− : MCSM|s →DCSM →DCSM → Mλrpc

(cont(K ,V))‡
C ,S = K$

C ,S [V •
C ,S]

(apply(V ,W ,K))‡
C ,S = K$

C ,S [V •
C ,S W•

C ,S]

(−)$−,− : VCSM →DCSM →DCSM → (Mλrpc → Mλrpc)

k$
C ,S [] = []

(App(V ,K))$
C ,S [] = K$

C ,S [V •
C ,S []]

(F(~V ,K))$
C ,S [] = K$

C ,S [[](M{~V •
C ,S /~y})]

if (F(~y,k)⇒ M†(App(arg,k))) ∈ cases(cont,S)
and F 6=Fin, F 6=App

Figure 3.11: Reverse translation from CSM to λrpc.

96

Observation. The range of the reverse translation (−)• includes all values of

λrpc and only values map to values under (−)•. The ranges of the reverse trans-

lations (−)? and (−)‡(−) include all λrpc terms.

Provided (C ,S) are in the image of (�−�c,top,�−�s,top), then K$
C ,S is a term

context for λrpc; by a simple inductive argument we can see that it is always an

evaluation context: it meets the grammar E ::= [] |V E | EM.

Correctness of the translation from λrpc to CSM

As before, CSM terms will disappear during reduction, so we again need a con-

tainment relation on definition-sets. This time we define the containment rela-

tion more generally: it holds just when the names defined in the right-hand side

are all defined in the left-hand side and upon inspecting corresponding function

definitions, either the bodies are identical or they are both case analyses where

the left-hand side contains all the alternatives of the right-hand side.

Definition (Definition containment). A definition set D contains D′, written D Ê
D′, iff for each definition f (~x) = M′ in D′ there is a definition f (~x) = M in D and

either M = M′ or cases(f ,D)⊇ cases(f ,D′).

Observation. For any subterm M′ of M, if C Ê �M�c,top then C Ê �M′�c,top and

if S Ê �M�s,top then S Ê �M′�s,top.

Definitions produced by the top-level translations are closed: for each term

that we find translated on the right-hand side of a definition case, all of that

term’s definitions can also be found amongst the definitions. More precisely:

Lemma 6 (Closure, definition sets). Let C and S be in the range of �−�c,top and

�−�s,top respectively.

• If N∗{arg/x} is the right-hand side of an element of cases(apply,C) then

C Ê �N�c,top.

• If (N†k){arg/x} is the right-hand side of an element of cases(apply,S) then

S Ê �N�s,top.

97

• If M†(App(arg,k)) is the right-hand side of an element of cases(cont,S)

then S Ê �M�s,top.

Proof. Let X be the term such that (C ,S) = (�X�c,top,�X�s,top). Each element of

cases(apply,C) that has a right-hand side of the form N∗{arg/x} is produced by

a term λcx.N, a subterm of X . As N is a subterm of X , then, C Ê �N�c,top. A

similar argument holds for the other two consequents.

Lemma 7 (Retraction). When C Ê �M�c,top and S Ê �M�s,top, we have

(i) (M◦)•
C ,S = M provided M is a value,

(ii) (M∗)?
C ,S = M, and

(iii) (M†K)‡
C ,S = K$

C ,S M for each K in CSM.

Proof. By induction on M. We omit the (C ,S) argument to each of the reverse-
translation functions, since it never changes.

CASE x, c for (i). Trivial. huzzah!

CASE λax.N for (i). Let x′ be a fresh variable. Take cases on a.

Case a = s:

(λsx.N)◦• = (pλsx.Nq(~y))• ~y= FV(λx.N)

= because
(pλsx.Nq(~y)⇒ N†k{arg/x})

∈ cases(apply,S)

λx′.((N†k){arg/x}{x′/arg})‡

= λx′.((N†k){x′/x})‡

=α λx.(N†k)‡

= (IH)
λx.N

98

Case a = c:

(λcx.N)◦• = (pλcx.Nq(~y))• ~y= FV(λx.N)

= because
(pλcx.Nq(~y)⇒ N∗{arg/x})

∈ cases(apply,C)

λx′.(N∗{arg/x}{x′/arg})?

= λx′.(N∗{x′/x})?

=α λx.N∗?

= (IH)
λx.N huzzah!

CASE V for (ii).
V∗? =V ◦? =V ◦• =V

huzzah!

CASE V for (iii).
(V †K)‡ = (cont(K ,V ◦))‡ = K$(V ◦•)= K$V

huzzah!

CASE LM for (ii).

(LM)∗? = (apply(L∗, M∗))? = L∗?M∗? = LM

huzzah!

CASE LM for (iii).

((LM)†K)‡ = (L†(pMq(~y,K)))‡ ~y= FV(M)
= (IH)

(pMq(~y,K))$L
=
because (pMq(~y,k)⇒ M†(App(arg,k))) ∈ cases(cont,S)

K$(LM) huzzah! ä

The reverse translation commutes with substitution.

Lemma 8 (Substitution–Reverse Translation). Given definition sets C , S and

terms M, V and W we have

V •
C ,S {W•

C ,S /x}= (V {W /x})•C ,S

M‡
C ,S {W•

C ,S /x}= (M{W /x})‡
C ,S and

M?
C ,S {W•

C ,S /x}= (M{W /x})?C ,S .

99

Proof. By induction on M.

CASE c, x. Trivial. huzzah!

CASE F(~V). If (F(~V))•
C ,S is defined, it equals (λax.N){~V •

C ,S /~y}. And from this,

(F(~V))•C ,S {~V •
C ,S /~y}{W•

C ,S /x} = (λax.N){~V •
C ,S /~y}{W•

C ,S /x}

= (λax.N){~V •
C ,S {W•

C ,S /x}/~y}
= (IH)

(λax.N){(~V {W /x})•C ,S /~y}

= (F(~V {W /x}))•C ,S

= (F(~V){W /x})•C ,S huzzah! ä

If (F(~V))•
C ,S is not defined, then neither is (F(~V){W /x})•, and vice versa.

The cases for (−)? and (−)‡ are simple uses of the inductive hypothesis, taking
care with the use of (−)$ and noting, as in the above case for F(~V)

•
, that the

left-hand side is defined just when the left-hand side is.

Lemma 9 (Soundness). For any term M and substitution σ in λrpc, together

with definition sets C and S such that C Ê �M�c,top and S Ê �M�s,top, we have

the following implications for all V and K :

(i) M∗σ−�C ,S V

implies Mσ•
C ,S ⇓c V •

C ,S and

(ii) tramp([]); (M†K)σ−�C ,S tramp([]); cont(K ,V)

implies Mσ•
C ,S ⇓s V •

C ,S .

Proof. By induction on the length of the CSM reduction sequence. Throughout

the induction, σ is kept general.

We make free use of Lemma 5, showing that we can apply a substitution to a

reduction to get another reduction.

When using the inductive hypothesis, the preconditions that C Ê �M�c,top and

S Ê �M�s,top will be maintained because we will only use the inductive hypoth-

esis on subterms of the M and on terms N whose translations are part of the

rhs of definitions in C ,S and thus for which C ,S Ê �N�c,top and �N�s,top (by the

closure of definition-sets).

100

In this proof we omit the subscripts C , S on reductions, because they are

unchanged throughout reduction sequences, and on the reverse-translation func-

tions, because they are unchanged throughout the recursive calls thereof.

Take cases on the structure of the starting term, either (i) M∗σ or (ii) (M†K)σ,

and split the conclusion into cases for (i) and (ii);

CASE LM for (i).

By hypothesis, we have (LM)∗σ−�V .

By definition, (LM)∗σ= apply(L∗σ, M∗σ).

In order for the reduction not to get stuck, it must be that

• L∗σ reduces to a value F(~V) with (F(~V))• = λax.N{~V •/~y} for fresh x

and some a and N.

• M∗σ reduces to a value; call it W .

The freshness of x will allow us to equate simultaneous and sequential

substitutions involving x.

The reduction begins as follows:

(LM)∗σ = apply(L∗σ, M∗σ)

−� apply(F(~V), M∗σ)

−� apply(F(~V),W)

Applying the inductive hypothesis twice, we get

Lσ• ⇓c (F(~V))• =λax.N{~V •/~y} and

Mσ• ⇓c W•

We now show the third leg of the BETA rule, that N{~V •/~y}{W•/x} ⇓a V •, by

cases on a.

If a = c then N is such that (F(~y) ⇒ N∗{arg/x}) ∈ cases(apply,C), by defini-

tion of (−)•.

101

Now the reduction finishes as:

apply(F(~V),W)

−� N∗{~V /~y,W /x}= N∗{~V /~y}{W /x}

−� V

So by the inductive hypothesis N{~V •/~y}{W•/x} ⇓c V •.

If a = s then N is such that

(F(~y)⇒ (N†k){arg/x})) ∈cases(apply,S) and

(F(~y)⇒ tramp(req apply (F(~y),arg,Fin()))) ∈cases(apply,C).

Now the reduction finishes as

apply(F(~V),W)

−� tramp(req apply (F(~V),W ,Fin()))

−� tramp([]); apply(F(~V),W ,Fin())

−� tramp([]); (N†(Fin())){~V /~y,W /x}= (N†(Fin())){~V /~y}{W /x}

−� (IH)

tramp([]); cont(Fin(),V)

−� V

So by the inductive hypothesis N{~V •/~y}{W•/x} ⇓c V •.

The judgment (LM)σ• ⇓c V • follows by BETA. huzzah!

CASE LM for (ii).

By hypothesis, we have for some K that

tramp([]); ((LM)†K)σ−� tramp([]); cont(K ,V)).

By definition, (LM)†K = L†(pMq(~z,K)), letting~z = FV(M).

In order for the reduction not to get stuck, all of the following must hold:

102

1. pMq(~z,k)⇒ M†(App(arg,k)) is in cases(cont,S)

2. (M†K)σ reduces to a term of the form cont(K ,W) and

3. (L†K)σ reduces to a term of the form cont(K ,F(~y)), with (F(~y))• =
λax.N for fresh x and some a and N.

The reduction begins as follows:

tramp([]); ((LM)†K)σ

= tramp([]); (L†(pMq(~z,K)))σ

−� tramp([]); cont((pMq(~z,K))σ,F(~V))

= tramp([]); cont(pMq(~zσ,K),F(~V))

−→ tramp([]); (M†(App(arg,K))){F(~V)/arg, (~zσ)/~z}

= tramp([]); (M†k){App(F(~V),K)/k,~zσ/~z}

−� tramp([]); cont(App(F(~V),K),W)

−→ tramp([]); apply(F(~V),W ,K)

Applying the inductive hypothesis twice, we get

Lσ• ⇓s (F(~V))• =λax.N{~V •/~y} and

Mσ• ⇓s W•

Now we show the third leg of the BETA rule, that N{~V •/~y}{W•/x} ⇓a V •, by

cases on a.

If a = s then N is such that (F(~y)⇒ (N†k){arg/x})) ∈ cases(apply,S). So the

reduction continues as

tramp([]); apply(F(~V),W ,k)

−→ tramp([]); (N†k){~V /~y,W /x}= (N†k){~V /~y}{W /x}

−� tramp([]); cont(k,V)

So by the inductive hypothesis, we get (as requred)

N{~V •/~y}{W•/x} ⇓s V •.

103

If a = c then N is such that

(F(~y)⇒ N∗{arg/x}) ∈cases(apply,C) and

(F(~y)⇒Call(F(~y),arg,k)) ∈cases(apply,S).

So the reduction continues as:

tramp([]); apply(F(~V),W ,k)

−→ tramp([]); Call(F(~V),W ,k)

−→ tramp(Call(F(~V),W ,k))

−→ tramp(req cont (k,apply(F(~V),W)))

−→ tramp(req cont (k, N∗{~V /~y,W /x}))

= tramp(req cont (k, N∗{~V /~y}{W /x}))

−� tramp(req cont (k,V))

−� tramp([]); cont(k,V)

So by the inductive hypothesis, we get

N{~V •/~y}{W•/x} ⇓s V •.

The judgment (LM)σ• ⇓s V • follows by BETA. huzzah!

CASE V for (i) and (ii). Write W for M, which must also be a value.

Because the starting term is a value, the reduction is of zero steps: In

the client case: M∗σ = V −� V . We have that M∗ = W◦ so W◦σ = V . In

the server case: (M†K)σ= cont(K ,V) −� cont(K ,V). We have that M†K =
cont(K ,W◦) so W◦σ=V .

Using the substitution lemma (Lemma 8) and the inverseness of (−)• to

(−)◦, we get (W◦σ)• = Wσ•. Now (W◦σ)• = V • so V • = Mσ•. And so the

reduction Mσ• ⇓a V follows by VALUE. huzzah! ä

Next we turn to the completeness of the translation. First we show that con-

tinuations K in CSM are closely related to evaluation contexts E in λrpc. Using

this we show the possible forms of CSM terms that map to λrpc application terms.

104

Lemma 10. Given definition-sets C ,S and a continuation K , one of the follow-

ing holds:

(a) The form of K$
C ,S is [] and K = k.

(b) The form of K$
C ,S is V E and there exist J,V ′ such that

K = J{App(V ′,k)/k},

V ′•
C ,S = V and

J$
C ,S = E.

(c) The form of K$
C ,S is EM and there exist J, M′,F,~V such that

K = J{F(~V ,k)/k},

(F(~y,k)⇒ M′{App(arg,k)/k}) ∈ cases(cont,S),

(M′{~V /~y})‡
C ,S = M and

J$
C ,S = E.

Proof. The proof is by induction on K . Take cases on its form:

CASE k. By def., K$
C ,S = [], proving (a). huzzah!

CASE App(U ,K ′). By definition, K$
C ,S = K ′$

C ,S [U•
C ,S []].

If K ′ = k, then we prove (b). By def., K ′$
C ,S = []. Letting J = k and E = []

we get K = J{App(U ,k)/k} and J$
C ,S = E as needed.

If K ′ 6= k then the induction hypothesis gives us one of the cases (b) or

(c); we prove the same case. The IH provides J′ and E′ with J′$
C ,S = E′.

Let J = App(U , J′) and E = E′[U•
C ,S []]. By def., J$

C ,S = E. The required

relation between K and J follows by manipulation of substitutions. The

other needed items (V ′, or F and M′) carry through from the inductive

hypothesis. huzzah!

CASE G(~W ,K ′). By definition of (−)$
C ,S , we have N such that

(G(~y,k)⇒ N†(App(arg,k))) ∈ cases(cont,S)

105

which gives us K$
C ,S = K ′$

C ,S [[](N{~W•
C ,S /~y})].

If K ′ = k, then we prove (c). By def., K ′$
C ,S = []. Let F be G. Letting J = k

and E = [] we get K = J{G(~W ,k)/k} and J$
C ,S = E as needed. Let M′ be

N†k. Then (M′{~W /~y}))‡
C ,S = M′‡

C ,S {~W•
C ,S /~y})= N{~W•

C ,S /~y} as needed.

If K ′ 6= k then the induction hypothesis gives us one of the cases (b) or (c);

we prove the same case. The IH provides J′ and E′ with J′$
C ,S = E′. Let

J = G(~W , J′) and E = E′[[](N{~W•
C ,S /~y})]. By def., J$

C ,S = E. The required

relation between K and J follows by manipulation of substitutions. The

other needed items (V ′, or F and M′) carry through from the inductive

hypothesis. huzzah! ä

Lemma 11 (Application terms’ inverse image under (−)‡). Given a CSM term

N ′ and λrpc terms L and M with N ′‡
C ,S = LM, then at least one of the following

hold:

(a) there exist CSM terms L′, M′, ~V and name F s.t.:

N ′ = L′{F(~V ,k)/k},

L′‡
C ,S = L

(M′{~V /~y})‡
C ,S = M and

(F(~y,k)⇒ M′{App(arg,k)/k}) ∈ cases(cont,S).

(b) L is a value and there exist CSM terms V ′ and M′ s.t.:

N ′ = M′{App(V ′,k)/k},

V ′•
C ,S = L and

M′‡
C ,S = M.

(c) L and M are values and there exist CSM terms V ′ and W ′ s.t.:

N ′ = apply(V ′,W ′,k) and

V ′•
C ,S = L and W ′•

C ,S = M.

106

Proof. Define two terms, K and Q, as follows: Consider the possible forms of N ′:

either cont(K ,U ′) or apply(U ′,W ′,K). In the first case, let Q =U ′•
C ,S , and in the

other let Q =U ′•
C ,S W ′•

C ,S . In each case, by def., N ′‡
C ,S = K$

C ,S [Q].

Take cases on the structure of K$
C ,S as enumerated by Lemma 10.

CASE K$
C ,S = []. We show consequent (c).

Take cases on the form of N ′:

• Case cont(K ,U ′). Here N ′‡
C ,S =U ′•

C ,S ; but this is not an application,

a contradiction. huz.

• Case apply(U ′,W ′,K)

Here N ′‡
C ,S =U ′•

C ,S W ′•
C ,S = LM. By structural equality, then, U ′•

C ,S =
L and W ′•

C ,S = M. huzzah!

CASE K$
C ,S = V E. We show consequent (b). We have L = V and E[Q] = M.

From Lemma 10 we have J and V ′ such that K = J{App(V ′,k)/k} with

J$
C ,S = E and V ′•

C ,S =V . Let M′ be the one of cont(J,U ′) or apply(U ′,W ′, J)

that matches the form of N ′. Then N ′ = M′{App(V ,k)/k}. Calculate that

M′‡
C ,S = J$

C ,S [Q]= E[Q]= M, as needed. huzzah!

CASE K$
C ,S = EN. We show consequent (a). We have E[Q] = L and N = M.

From Lemma 10 we have terms J, M′ and ~V and name F so that K =
J{F(~V ,k)/k},

(F(~y,k)⇒ M′{App(arg,k)/k}) ∈ cases(cont,S),

and (M′{~V /~y})‡
C ,S = M and J$

C ,S = E; this supplies the needed F, ~V and M′.

Let L′ be the one of cont(J,U ′) or apply(U ′,W ′, J) that matches the form of

N ′. Then N ′ = L′{F(~V ,k)/k}, as needed. Calculate that L′‡
C ,S = J$

C ,S [Q] =
E[Q]= L, as needed. huzzah! ä

Notation. Write M**C ,S V for

tramp([]); M −�C ,S tramp([]);cont(k,V).

107

The next lemma shows that the behavior of terms in CSM follows that of the

corresponding λrpc terms.

Lemma 12 (Completeness). Given any CSM terms M, V and definitions C

and S ,

(i) If M?
C ,S ⇓c V then there exists V ′ with V ′•

C ,S =V and M −�C ,S V ′, and

(ii) if M‡
C ,S ⇓s V then there exists V ′ with V ′•

C ,S =V and M**C ,S V ′

Proof. By induction on the derivation of the given M?
C ,S ⇓c V or M‡

C ,S ⇓s V . Take

cases on the final step of the derivation:

CASE VALUE. The low-level reduction is of zero steps. The initial low-level term

must be a value, V ′, since its image under the reverse translation is a

value. The initial and final low-level terms are the same because V ′?
C ,S =

V ′•
C ,S and V ′‡

C ,S =V ′•
C ,S on values. huzzah!

CASE BETA. Recall the rule:

L ⇓a λ
bx.N M ⇓a W N{W /x} ⇓b V

LM ⇓a V

Take cases on a, the location where the BETA reduction takes place.

• Case a = c.

Because the starting CSM term maps to LM under (−)?, it must be of

the form apply(L′, M′) with L′?
C ,S = L and M′?

C ,S = M.

By IH we have normal forms

L′ −� F(~V)

M′ −� W ′

satisfying

(F(~V))•C ,S = λbx.N

W ′•
C ,S = W

108

So the term reduces as follows:

apply(L′, M′) −� apply(F(~V),W ′)

To finish the reduction, take cases on b.

If b is c then we have N ′ such that

(F(~y)⇒ N ′) ∈ cases(apply,C)

Therefore

(N ′{x/arg})?C ,S {~V •
C ,S /~y} = N (def. of (F(~V))•)

(N ′{x/arg}{~V /~y})?C ,S = N

(N ′{x/arg}{~V /~y})?C ,S {W ′•
C ,S /x} = N{W /x}

= (N ′{x/arg}{~V /~y}{W ′/x})?C ,S

And so by IH
N ′{x/arg}{~V /~y}{W ′/x}−�V ′

with V ′•
C ,S =V .

Now we can finish the reduction:

apply(F(~V),W ′)

−→ N ′{~V /~y}{W ′/arg}

−� V ′

which was to be shown. huz.

If b is s then we have N ′ such that

(F(~y)⇒ tramp(req apply (F(~y),arg,Fin())))

∈ cases(apply,C)

and (F(~y)⇒ N ′) ∈ cases(apply,S)

Therefore

(N ′{x/arg})‡
C ,S {~V •

C ,S /~y} = N (def. of (F(~V))•)

(N ′{x/arg}{~V /~y})‡
C ,S = N

(N ′{x/arg}{~V /~y})‡
C ,S {W ′•

C ,S /x} = N{W /x}

= (N ′{x/arg}{~V /~y}{W ′/x})‡
C ,S

109

And so by IH
N ′{x/arg}{~V /~y}{W ′/x}**C ,S V ′

with V ′•
C ,S =V .

Now we can finish the reduction:

apply(F(~V),W ′)

−� tramp(req apply (F(~V),arg,Fin()))

−→ tramp([]); apply(F(~V),arg,Fin())

−→ tramp([]); N ′{~V /~y}{W ′/arg, Fin()/k}

−� tramp([]); cont(Fin(),V ′)

−� tramp(Return(V ′))

−→ V ′

which was to be shown. huzzah!

• Case a = s. Let X be the term such that X ‡
C ,S = LM. Lemma 11

nominates the possible forms of X .

First consider the case of Lemma 11(a). This gives us terms L′ and

M′ such that

X = L′{G(~U ,k)/k}

L′‡
C ,S = L,

(M′{~U /~z})‡
C ,S = M and

(G(~z,k)⇒ M′{App(arg,k)/k}) ∈ cases(cont,S).

By IH we have these normal forms:

L′ **C ,S F(~V)

M′{~U /~y} **C ,S W ′

satisfying

(F(~V))•C ,S = λbx.N

W ′•
C ,S = W

110

And so we can trace the reduction of our term:

tramp([]); L′{G(~U ,k)/k} (a)

−� tramp([]); cont(G(~U ,k),F(~V))

−� tramp([]); M′{App(F(~V),k)/k} (b)

−� tramp([]); cont(App(F(~V),k),W ′)

−� tramp([]); apply(F(~V),W ′,k) (c)

To finish the reduction, take cases on b.

If b is c then

(F(~y)⇒Call(F(~y),arg,k)) ∈ cases(apply,S)

and (F(~y)⇒ N ′) ∈ cases(apply,C)

Therefore

(N ′{x/arg})?C ,S {~V •
C ,S /~y} = N (def. of (F(~V))•)

(N ′{~V /~y}{x/arg})?C ,S = N

(N ′{~V /~y}{x/arg})?C ,S {W ′•
C ,S /x} = N{W /x}

= (N ′{~V /~y}{x/arg}{W ′
C ,S /x})?C ,S

And so by IH
N ′{~V /~y}{x/arg}{W ′

C ,S /x}−�V ′

with V ′•
C ,S =V

Now we can finish the reduction:

tramp([]); apply(F(~V),W ′,k)

−� tramp([]); Call(F(~V),W ′,k)

−→ tramp(Call(F(~V),W ′,k))

−� tramp(req cont (k,apply(F(~V),W ′)))

−→ tramp(req cont (k, N{~V /~y,W ′/arg}))

−� tramp(req cont (k,V ′))

−→ tramp([]); cont(k,V ′)

111

which was to be shown. huz.

If b is s then we have N ′ such that

(F(~y)⇒ N ′) ∈ cases(apply,S)

Therefore

(N ′{x/arg})‡
C ,S {~V •

C ,S /~y} = N (def. of (F(~V))•)

(N ′{x/arg}{~V /~y})‡
C ,S = N

(N ′{x/arg}{~V /~y})‡
C ,S {W ′•

C ,S /x} = N{W /x}

= (N ′{x/arg}{~V /~y}{W ′/x})‡
C ,S

And so by IH

N ′{x/arg}{~V /~y}{W ′/x} **C ,S V ′

with V ′•
C ,S =V

Now we can finish the reduction:

tramp([]); apply(F(~V),W ′,k)

−� tramp([]); N ′{~V /~y,W ′/arg}

−→ tramp([]); cont(k,V ′)

which was to be shown.

Now consider the other cases from Lemma 11, either (b) or (c). Then

we use the above reduction sequence but beginning from the corre-

spondingly marked line. huzzah! ä

At last we can state and prove the full correctness result, compactly:

Proposition 2 (Soundness and Completeness). For any closed λrpc term M,

value V and definitions (C ,S)= (�M�c,top,�M�s,top),

M ⇓c V ⇐⇒ exists V ′ s.t. M∗ −�C ,S V ′ and V ′• =V

112

Proof. The (⇐) implication is immediate from Lemma 9. To infer the (⇒) im-

plication from Lemma 12 we need to show that the given M has an M′ such

that M′?
C ,S = M. We can construct M′ = M∗ and the needed relationship follows

directly from the retraction lemma.

113

Syntax

constants c
variables x
locations a, b

terms L, M, N ::= 〈M〉a |λx.N | LM |V
values V ,W ::= λax.N | x | c

Semantics

M ⇓a V

V ⇓a V (VALUE)

λx.N ⇓a λ
ax.N (ABSTR)

L ⇓a λ
bx.N M ⇓a W N{W /x} ⇓b V

LM ⇓a V
(BETA)

M ⇓b V

〈M〉b ⇓a V
(CLOTHE)

Figure 3.12: The bracket-located lambda calculus, λ〈〉 .

3.4 Extension: Location Brackets

The calculus λ〈〉 in Figure 3.12 adds location brackets 〈·〉a to λrpc and allows

unannotated λ-abstractions. The interpretation of a bracketed expression 〈M〉a

in a location-b context is a computation that evaluates every computation step

lexically within M at location a and returns the value to the location b. Unanno-

tated λ-abstractions are not treated as values: we want all values to be mobile,

and yet the body of an unannotated abstraction should inherit its required loca-

tion from the surrounding lexical context. Thus, to become a value, the abstrac-

tion itself must become tagged with this location, and the ABSTR rule attaches

this annotation when it is not already provided.

Figure 3.13 gives a translation from λ〈〉 to λrpc. Bracketed terms 〈M〉a are

114

�〈M〉b�a = (λbx.�M�b)() x fresh
�λx.N�a = λax.�N�a

�λbx.N�a = λbx.�N�b

�x�a = x
�c�a = c

Figure 3.13: Translation from λ〈〉 to λrpc.

simply treated as applications of located thunks; and as expected, unannotated

abstractions λx.N inherit their annotation from their lexical context.

To argue that this translation is correct in the same way as the previous

translation, we would need a reverse translation, but there is a problem: the

forward translation is not injective. For example, 〈M〉b and (λbx.M)() go to the

same term. We could resort to some hack to distinguish the terms, making it in-

jective, or we could try to prove a looser relationship, perhaps using a simulation

relation.

Location brackets such as these may be an interesting language feature, al-

lowing programmers to designate the location of computation of arbitrary terms.

3.5 Related Work

Location-aware languages Inspired by modal logic, Lambda 5 [Murphy et al.,

2004, Murphy, 2007] is a small calculus with constructs for controlling the loca-

tion and movement of terms and values. The type of an expression indicates

whether its result is mobile (packaged for transport), located but remotely ma-

nipulable (essentially a reference to which operations can be remote applied

without explicitly), or simply local; and term formers box, unbox and transport

these values. By contrast, λrpc trades this fine control for simplicity, such that

the programmer needn’t pack and unpack values into the special types. As in the

present work, the translation of Lambda 5 to an operational model also involves

115

a CPS translation; and closure conversion as an alternative to defunctionaliza-

tion.

Neubauer and Thiemann [2005] describe techniques for splitting a location-

annotated sequential program into separate concurrent programs that commu-

nicate over channels. By default each program maintains its own state, unlike

the asymmetrical client-server pair used here. They note that “Our framework

is applicable to [the special case of a web application] given a suitable mediator

that implements channels on top of HTTP.” The trampoline technique we have

given provides such a mediator. Neubauer [2007] and Neubauer and Thiemann

[2008] later add a location-assignment scheme which assigns locations to terms

in order to minimize a certain worst-case running time metric. It would be inter-

esting to try applying such a scheme to the RPC calculus.

For security purposes, Zdancewic et al. [1999] developed a calculus with lo-

cation brackets, which inspired λ〈〉 . Their results show how a type discipline,

making a translation to and from an abstract type at the brackets, can be used

to prove that certain principals (analogous to λrpc’s locations) cannot inspect

certain values passed across an interface. Such a discipline could be applied

to our calculus, to address information-flow security between client and server;

Zdancewic et al.’s guarantee was based on the abstractness of the abstract type.

In a networked setting, we would need to insert cryptographic protections at the

boundaries, perhaps interpreting these as type coercions. Matthews and Find-

ler [2007] give a nearly identical semantics, this time to model multi-language

programs; here languages act like principals or locations.

Defunctionalization After first being introduced in a lucid but informal ac-

count by Reynolds [1972], defunctionalization has been formalized and verified

in a typed setting in several papers [Bell and Hook, 1994, Bell et al., 1997, Pot-

tier and Gauthier, 2004, Nielsen, 2000, Banerjee et al., 2001]. Defunctionaliza-

tion is formalized here in an untyped setting, which is slightly easier because

we need not segregate the application machinery by type. Danvy and Nielsen

[2001] and Danvy and Millikin [2008] explore a number of uses and properties

116

of defunctionalization. In particular, the connection between continuations and

evaluation contexts, exploited in our completeness proof, was noted by Danvy

and Nielsen [2001] in the context of work on defunctionalization.

Defunctionalization is very similar to lambda-lifting [Johnsson, 1985], but

lambda-lifting does not reify a closure as an inspectable value. Thus it would

not be applicable here, where we need to serialize the function to send across the

wire.

As noted in the introduction, Murphy [2007] uses closure-conversion in place

of our defunctionalization; the distinction here is that the converted closures still

contain code pointers, rather than using a stable name to identify each abstrac-

tion. These code pointers are only valid as long as the server is actively running,

and thus it may be difficult to achieve statelessness with such a system.

Continuation-Passing The continuation-passing transformation has a long

and storied history, going back to the 1970s [Fischer, 1972, Plotkin, 1975] and

including nice treatments by Danvy [Danvy and Filinski, 1992]. Our treatment

owes much to the presentation and results of Sabry and Wadler [1997]. Reynolds

[1993] tells an interesting tale of the many discoveries of the continuation idea.

Trampolined style Ganz et al. [1999] introduced the trampolined style of tail-

form programs, whereby every tail call is replaced with the construction of a

value containing a thunk for the tail call. Instead of performing the call, then, the

program is returning a representation of the next tail call to be made. The pro-

gram is then to be invoked from a loop, called the trampoline, which might treat

the thunk in various ways, perhaps invoking it immediately, interjecting other

actions, juggling several thunks or other possibilities. A program in trampolined

style only does a bounded amount of work before returning the next thunk. The

authors give a mechanical translation taking any program in tail form (which

includes CPS) to one in trampolined style.

The system presented here is an instance of trampolined style in the sense

that each remote call from the client is wrapped in a trampoline, and all remote

117

calls from the server to the client are transformed to trampoline bounces. The

fact that local function calls take place directly is a departure from earlier work.

3.6 Conclusions and Future Work

We’ve shown how to compile a symmetrical location-aware language to an asym-

metrical, stateless, client-server machine by using three classic techniques (CPS-

translation, defunctionalization and trampolining) to represent the server’s dy-

namic context as a value on the client.

In the future, we hope to extend the source calculus by adding features such

as exceptions and generalizing by allowing each annotation to consist of a set of

permissible locations (rather than a single one). We also hope to implement the

“richer calculus” with location brackets in the Links language.

The present work begins with a source calculus with location annotations, but

the activity of annotation may burden the programmer. Considering that some

resources are available only at some locations, it should be possible to automat-

ically assign location annotations so as to reduce communication costs—as ex-

plored by Neubauer and Thiemann [2008]—rather than requiring the program-

mer to carefully annotate the program. Because the dynamic location behavior

of a program may be hard to predict, and because there are a variety of possible

communication and computation cost models, and perhaps other issues to con-

sider, such as security, the problem is multifaceted and would be interesting to

explore.

Remote-procedure call is not the only way to structure distributed programs.

Extensions of this work might compare with or extend to other models, such

as message-passing, shared memory (including transactional memory), join pat-

terns, or synchronization techniques from the distributed programming litera-

ture.

118

Chapter 4

Formlets

(This chapter represents joint work together with Sam Lindley, Philip Wadler and Jeremy

Yallop.)

4.1 Introduction

“Formlets” are a high-level abstraction of HTML forms, or fragments thereof,

embodied as a language feature in Links (and also ported to some other lan-

guages). They encapsulate the appearance of and the data processing for a set

of form fields, permitting arbitrary composition and, ultimately, delivery of the

field data at any desired type. They build on raw HTML forms which are first-

order (supporting no safe composition), unscoped (not forcing alignment between

field definitions and their consuming code) and unstructured (delivering results

only in the form of a flat string mapping). By contrast, formlets are composable

(small formlets can be combined to produce larger ones), scoped (alignment be-

tween form fields and consumers is checked), and restructurable (the physical

appearance and the data emitted can be manipulated arbitrarily).

As an example use case, imagine that you want to permit a user to enter a

date, such as 31/1/2009. This control might appeart to the user in various ways,

such as a text field, a set of pop-up menus, or a small calendar. Regardless of how

the widget looks and feels, its role in the application is just to produce a date

119

value, so the part of the program that consumes the data should be insulated

from the choice of user interaction.

Now, formlets enable the following scenario: one piece of code defines a form-

let, of type Formlet(Date), which describes how the control appears and how it

determines the Date value. Let’s say it uses three pop-up menus. A separate

piece of code, oblivious to the pop-up menus, uses this formlet by placing it on

a web page, and attaches a continuation which accepts the resulting Date data.

Later on, we can replace the three pop-up menus with a small calendar without

affecting the page context or the continuation. Furthermore we can compose two

or more formlets to create a new formlet which seals them inside, emitting data

computed from the inner formlets. For example, we can compose two date form-

lets, and some others, inside a “travel” formlet which emits a sealed itinerary.

The composition works as you might hope: duplicating the date formlet creates

no clash between the fields, and we can again use the itinerary without caring

how it was entered.

The twin benefits of encapsulation (of the user interface) and separation (of

data input from data consumption), as given by formlets, serve the classic vision

of reusable software components.

Example

Figure 4.1 shows formlets in use. Principally, it defines a formlet dateFormlet,

as a value of type Formlet(Date) (and Date is defined as a tagged triple of in-

tegers). The example shows how dateFormlet is composed out of three compo-

nent formlets, corresponding to the occurrences of intFormlet seen within the

formlet e1 yields e2 construction. These are wrapped up in some surround-

ing HTML, and we have a way of binding the data they produce to the variables

day, mo and year, which can be used within the yields clause to produce the

output of dateFormlet.

More specifically, a formlet can be imagined as having a visible part, the ren-

dering, and a data-processing part, the collector. The rendering is given in the

120

typename Date = Date(Int, Int, Int) # as (day, month, year)

sig dateFormlet : Formlet(Date)

var dateFormlet =

formlet

<div class="date-input">

Date

{intFormlet -> day}

{intFormlet -> mo}

{intFormlet -> year}

(day/month/year)

</div>

yields

Date(day - 1, mo - 1, year `mod` 100)

Figure 4.1: Links code defining a formlet for entering a structured date.

formlet clause of the expression, which consists in this case of three component

formlets surrounded by HTML, as noted. The component formlets here are prim-

itive formlets (intFormlet) that each render as single input fields, and return

Int-typed data. The surrounding HTML consists here of an outer div element

(styled with CSS class date-input), and inside this a boldface label “Date,” and

finally a short legend for the user, explaining the order of the fields (apologies to

my fellow Americans; the thesis committee is European).

The collector is specified by the yields clause. This is how we compute the

value that will be delivered when this formlet is used as a component of another,

or delivered to the final consuming code; the yields expression is evaluated at

form-submission time. To use the values of component formlets, we use a vari-

able binding mechanism called formlet bindings. Within the formlet clause you

can find the formlet binding construct {fmlt -> x}, which also embeds at that

point a component formlet’s rendering. Its left-hand side, fmlt, is an expression

with type Formlet(T). When the form is submitted, the collector of fmlt will be

evaluated to produce a value of type T, to which x is then bound, scoped to the

present formlet’s yields clause.

Figure 4.2 shows how this formlet might be used within yet another formlet,

and thus how formlets can be freely recombined to create further formlets.

121

typename Itinerary = Itinerary(String, Date, Date)

sig travelFormlet : Formlet(Itinerary)

var travelFormlet =

formlet

<div>

<h1>Book your stay</h1>

Name: {stringFormlet -> name}

Arrival: {dateFormlet -> arr}

Departure: {dateFormlet -> dep}

</div>

yields

Itinerary(name, arr, dep)

Figure 4.2: Links code defining a formlet for booking a hotel stay.

Consuming formlet data

Ultimately, we want to present further pages to the user, not just bundle data in

a formlet. This is done with the function handle:

sig handle : (Formlet(a), (a) -> Xml) -> Xml

Given a Formlet(a) value and a continuation (a) -> Xml producing the next

HTML page, handle binds them together to produce a bona-fide HTML form.

The HTML produced by handle is a form element whose action attribute em-

beds the (serialization of the) continuation as well as all the component formlets’

collectors.

4.2 Idioms

Underlying this syntax is a small set of operators, which also comprise the

functional-programming interface known as an idiom [McBride, 2005, McBride

and Paterson, 2008, Lindley et al., 2008], a generalization of the monad inter-

face [Wadler, 1995]. An idiom, also known as an “applicative functor,” is a type

constructor I together with parametric operations pure and (~)—pronounced

122

“apply”—having types

pure : a→ Ia

(~) : I(a→ b)→ I(a)→ I(b)

such that these equations apply (the (◦) operator is function composition):

pure id~u = u,

pure (◦)~u~v~w = u~ (v~w),

pure f ~pure x = pure (f x) and

u~pure x = pure (λ f . f x)~u.

Intuitively, the pure function lifts a value into the idiom and the (~) operator

applies a function, already embedded in the idiom, to an argument embedded in

the idiom, producing a result embedded in the idiom. The idiom type Ia would

typically carry additional information (or “effects”) alongside data of type a. The

equations ensure that pure values can be re-ordered within an expression (an

idiomatic expression, one built from the idiom operators), preserving the result,

but that impure ones cannot, in general; thus the order of these effects may make

a difference to the idiom.

In our case, what effects are involved? We can consider name generation,

HTML-accumulation, and environment reading (used for collecting the result)

to be “effects.” In the course of a formlet construction, we generate fresh names

for input fields, we accumulate an HTML structure as we go, and we compose

environment functions into larger environment functions.

So the idiom is defined as follows (see Figure 4.4): the pure operation takes

a result value and returns a constant formlet (always yielding the given value),

carrying an empty rendering, without HTML elements. The (~) operator, besides

performing a function application, also composes the effects of the two formlets:

it threads the name generator through the renderers (so that their generated

names will not clash), concatenates the HTML renderings, and composes the

collectors, passing the same environment to each. In so doing it co-ordinates the

generated names between renderer and collector to keep them in synch.

123

xml=Tagof (string×[(string× string)]×[xml])
|Textof string

Figure 4.3: Definition of an XML data type for use with formlets.

env= [string× string]

Iformlet(a) = int→ ([xml]× (env→ a))× int

pureformlet x = λi.(([],λe.x), i)
u~formlet v = λi.let ((xml f , c f), i′)= ui in

let ((xmlx, cx), i′′)= vi′ in
((xml f ++ xmlx, λe.c f e(cxe)), i′′)

stringFormlet = λi.((xmlTag "input" [("name", intToString i)] [],
λe.lookup i e), i+1)

intFormlet = pure(stringToInt)~stringFormlet

Figure 4.4: Definition of the formlet idiom.

124

pureI◦J = pureI ◦pureJ

f ~I◦J x = ((pureI(~J)) f)~I x

Figure 4.5: The composition of idioms.

In fact, the three kinds of side effects are so crisply distinct that each can be

defined as a separate idiom, and the formlet idiom falls out as their composition,

with a few additional operators that entangle their effects. The three component

idioms are essentially standard (they are derived directly from standard mon-

ads): the name-generation idiom (In), the monoid-accumulation idiom over the

HTML monoid (Ix), and the environment-reader idiom (Ie). The formlet idiom

decomposes as follows:

Iformlet = In ◦ Ix ◦ Ie.

The composition operation on idioms is defined formally in Figure 4.5, and the

component idioms in Figure 4.6. Additionally, we need some primitive formlets,

which are defined directly in terms of the component idioms. Figure 4.7 defines

the primitives stringFormlet and intFormlet.

So far we have not seen that the definitions in Figure 4.4 satisfy the idiom

laws. The fact that they do follows from two general facts: first, that every

monad is an idiom, and hence the three component idioms of Figure 4.6, which

are derived from standard monads, are idioms. And second, the composition of

idioms is also an idiom; hence our formlet structure is an idiom. Both of these

general facts are noted in McBride and Paterson [2008].

Could formlets could be defined as a monad, rather than as an idiom? After

all, the monad interface, being more strict, admits more uses, which might be

beneficial. But the formlet idiom could not be defined as a monad, as can be seen

by studying the type of the monadic “bind” operation:

(>>=) : Formlet(a)→ (a→Formlet(b))→Formlet(b)

125

In(a) = int→ a× int

puren x = λi.(x, i)
u~n v = λi.let (f , i′)= ui in let (x, i′′)= vi′ in (f x, i′′)

freshName = λi.(i, i+1)

Ix(a) = [xml]×a
purex x = ([], x)
u~x v = let (x1, f)= u in let (x2, x)= v in (x1 ++ x2, f x)

xmlText text = (Text(text), ())
xmlTag tagName attrs contents = (Tag(tagName,attrs,contents), ())

Ie(a) = env→ a
puree x = λe.x
u~e v = λe.ue(ve)

getEnv n = λe.lookup n e

Figure 4.6: The three standard idioms comprising formlets.

stringFormlet = puren (λn.(purex (λ().getEnv n))
~ (xmlTag"input"[("name",n)][]))

~n freshName
intFormlet = (pureformlet intOfString)~stringFormlet

xmlTextformlet str = puren (xmlText str, puree())
xmlTagformlet tagName attrs fmlt=

puren(λ(xml,envr).(xmlTag tagName attrs xml, envr))~n fmlt
xmlTreeformlet xml = puren(xml, puree())

Figure 4.7: Primitive formlet operations.

126

Here the Formlet(b) produced by the second argument may depend on the a value

contained within the first argument. But the a value in a Formlet(a) is the user’s

data; and yet we need to combine the two formlets on a page before presenting

them to the user. So how could we pass the user’s data to the function generat-

ing the second formlet? The data is not available at the right time, preventing

the structure we’ve been studying from constituting a monad. Viewed another

way, the monad interface requires us to support a dependency which we cannot

support, that between the a and the Formlet(b) in the second argument to (>>=).

We could define a “formlet monad” which presents formlets in sequence, each

one after the user has submitted the previous one, but that is not our formlet

structure, which composes formlets on a single page.

It may seem puzzling that we have taken three standard monads, considered

them as idioms, composed them, and arrived at something which is not a monad.

However, it is well-known that monads do not always compose to form monads,

and indeed these particular ones do not.

Idioms, then, comprise a suitably-general yet minimally-powerful interface

in which to express formlets. The factorization into standard idioms sheds light

on their structure and suggests this definition is more basic than just an ad-hoc

design.

4.3 Syntax

Figure 4.8 formally defines the formlet syntax. The additional constructs are

added to the expression grammar of Links, or indeed any other suitable func-

tional programming language. The extra syntactic forms are removed by the

translation �−� of Figure 4.9.

The target of the translation uses the operations of the formlet idiom as de-

fined in Figure 4.7, including the basic idiom operations.

In this chapter (as in the Links language), the notation <#>e1e2 · · · en</#>

denotes an HTML forest: a sequence of HTML trees. The notation is needed

to switch syntactic modes from the surrounding language, where juxtaposition

127

Expressions
e ::= ·· · | formlet q yields e (formlet)

Formlet quasiquotes

n ::= s | {e} | { f ⇒ p} | <t ats>n1 · · · nk</t> node
q ::= <t ats>n1 · · · nk</t> | <#>n1 · · · nk</#> quasiquote

Meta variables

e expression
p pattern

f formlet-type expression
s string

t tag
ats attribute list

Figure 4.8: Quasiquote syntax.

�formlet q yields e� = pure(fun q† →�e�) ~ q◦

s◦ = xmlTexts
{e}◦ = xmlTree �e�

{ f ⇒ p}◦ = � f �
(<t ats>n1 · · · nk</t>)◦ = xmlTag t ats (<#>n1 · · · nk</#>)◦

(<#>n1 · · · nk</#>)◦ = pure(fun n†
1 · · · n†

k → (n†
1, . . . ,n†

k))~n1
◦ · · ·~nk

◦

s† = ()
{e}† = ()

{ f ⇒ p}† = p
(<t ats>n1 · · · nk</t>)† = (n†

1, . . . , n†
k)

(<#>n1 · · · nk</#>)
† = (n†

1, . . . , n†
k)

Figure 4.9: Desugaring XML and formlets.

e1e2 denotes function application, to HTML mode, where juxtaposition denotes

construction of HTML node sequences. In particular, <#></#> denotes the empty

HTML-forest value.

The idiom operators are complete for the syntax and vice versa. The former

128

can be seen from the definition of the syntax; the latter is seen by letting

pure x = formlet<#></#>yields x

f ~ x = formlet { f → f ′}{x → x′}yields f ′x′.

4.4 Related Work

Web form abstraction has been tackled in several systems; formlets can be seen

as a distillation of these systems into an essential core.

The WASH Haskell library [Thiemann, 2002, 2005] provides combinators for

building up web forms with a typed result. It allows individual fields to be read at

any desired type, by associating that type with a function to parse the incoming

string. It also supports aggregating together multiple fields using tupling con-

structors, though these tuplings still reveal their component parts, rather than

encapsulating the data at some other chosen type.

Two existing systems, iData and Curry/WUI, support the same degree of

abstraction as formlets—they allow constructing form results at arbitrary type

with arbitray computation. In fact, iData provided a guide in the development of

formlets, while we were pleased to find how well Curry/WUI fit while finalizing

our formlets work.

The iData framework [Plasmeijer and Achten, 2006], in the language Clean,

offers form abstractions, each called an iData. Underlying iData is an abstrac-

tion much like formlets. As with formlets, iData permits constructing form re-

sults at arbitrary type in any computable way. Unlike formlets, an iData does not

abstract from the field-name generation, so an iData exposes its internal struc-

ture. On the one hand, this exposes the programmer to field-name clashes. But

on the other, it allows iDatas to be interdependent, each displaying a function of

data entered into the other.

The WUI library [Hanus, 2006, 2007], in the functional logic language Curry,

implements WUIs, an abstraction very similar to that of formlets. A WUI not

129

only emits a value of the desired type, it also consumes an argument of that type,

a default. This is useful since one commonly needs to pre-populate a form with

values previously entered.

It is worth noting that, since the WUI abstraction uses its type argument

both positively and negatively, it could not be defined as an idiom as such. This

is because, to transform a Wui a into a Wui b requires not only a function a → b

but also an inverse function b → a. The direct analogy with functional applica-

tion is thus strained, and WUIs would not fit the idiom interface. Perhaps this

should incite research into another interface which applies bidirectional trans-

formations to its objects.

The formlet abstraction itself has been implemented by other programmers,

in Haskell [Eidhof, 2008] and Scheme [McCarthy, 2008]; the latter implementa-

tion includes the syntactic sugar and is now a part of the standard distribution of

PLT Scheme [PLT]. Extensions to the idiom, supporting XHTML validation and

user-input validation (with appropriate combinators to control the validation)

are provided by Cooper et al. [2008], from which this chapter was derived.

Strugnell [2008] used formlets when porting a PHP project-management ap-

plication to Links, and wrote a comparison of Links’s with PHP’s approach to

form construction.

4.5 Conclusion

Formlets are both a high-level description of a safe, composable form abstraction

and a usable system implemented in several programming languages. Form-

lets encapsulate form presentation and data packaging, and supports decoupling

these from further transformation steps and the eventual consumption of the

data, and thus aid in creating modular web software. The operators allow con-

structing and transforming formlets in a compositional style. An accompany-

ing syntax allows writing and composing formlets with the familiar notation of

HTML, making them easy to use.

As a new application of the idiom interface, formlets show once again that

130

interface’s utility. The Links team hopes that this work might lead to further

applications and research on idioms, perhaps including a syntax like the formlet

syntax but general enough to work with any idiom.

131

Chapter 5

SQL Compilation

(This chapter represents sole work by the author, advised by Philip Wadler.)

5.1 Introduction

We’ve had a look at user-interface programming and client-server interaction.

Now what about the third leg of web programming: data persistence?

Data persistence in web applications is commonly provided by a relational

database. But a programmer’s interface to such a database is rarely comfortable.

Common practices for bridging the distance are either unsafe, or inflexible,

or use a different data model, giving rise to an impedance mismatch problem.

Programmers often form SQL queries simply by concatenating strings at run-

time (“string interpolation”); this is risky, as it becomes easy to make malformed

or undesired queries. Sometimes programmers develop a library of “prepared

statements” which are parameterized only in controlled ways; this is safer but

inflexible, requiring the programmer to dip into the library each time a prepared

statement needs to be adjusted. Object–Relational mappings (ORMs) provide a

safe and flexible object-oriented interface to data, but moving between the ob-

ject and relational models can give rise to subtle problems, for example when

object identity is relevant on the object side, or when complex join queries that

are inexpressible on the object side are needed.

132

All common approaches fall short in abstraction: none allows applying ab-

stracted query fragments, such as “where” conditions, in multiple contexts. And

all of them bring their own query language, with its own peculiar syntax (this

language may be SQL itself or the language comprised by the ORM library).

A newer approach is language-integrated query, as exemplified by Microsoft’s

LINQ [Microsoft Corporation, 2005], Edinburgh Links [Cooper et al., 2006], and

the Kleisli system for querying bioinformatics databases [Wong, 2000]. With

language-integrated query, the programmer writes iterations over the database

tables directly in a host programming language, and the programming system

takes care of converting these into SQL queries.

As an alternative to the common query interfaces, such a language-integrated

query system offers:

• intermediate nested data structures,

• native host-language syntax,

• abstraction over query expressions (including predicates, data transforma-

tions, and join tables, to name a few).

Close language integration for queries has fundamental limitations, since

general-purpose programming languages are more expressive than SQL. Besides

the problem of nested data structures, programming languages normally have

operations that cannot be expressed in SQL, including recursion, side-effecting

statements, and primitive functions that simply aren’t available. As a result, to

fully and safely integrate query languages into general-purpose languages, we

need an analysis that identifes “queryizable” expressions within programs that

are not, as a whole, queryizable—an analysis which this chapter provides.

Contributions In all, this chapter makes several contributions to the science

of language-integrated query; it shows

1. how to translate a suitable expression in a typical impure functional pro-

gramming language, as long as it has flat relation type (i.e., it denotes a

133

bag of records of base values), to an equivalent single SQL query (where

“suitable” includes the abjuration of recursive and effectful computations

and non-SQL-expressible primitive functions). This suitable sublanguage

is enough to express any query in a significant fragment of SQL.

2. how to support linguistic abstraction over query expressions by allowing

them to contain free variables, possibly including predicates or other func-

tions, and a type-and-effect system to enforce that these variables can only

be given runtime values that make the expression queryizable.

3. that the programmer can use an annotation to insist that a particular ex-

pression be queryized, so that the compiler can fail or warn at compile-time

if the expression is not surely queryizable.

Wong [1996] showed that any expression in a pure, first-order, nested rela-

tional algebra can be rewritten so that it produces no intermediate data struc-

tures deeper than the input and output relations (calling this property of the

algebra “conservativity”). This chapter extends that result by making the rela-

tional algebra higher-order (functions are first-class), setting it in the context of

an impure language, and providing a “queryizability” analysis.

Example Suppose Alice runs a local baseball league and tracks the teams with

a database and language-integrated query system. First, she wants a list of the

players with age at least 16. She might write this function:

fun overAgePlayers() {

query { for (p <- players)

where (p.age > 16)

[(name = p.name)] }

}

The compiler can deduce that this expression is in fact equivalent to an SQL

query (it is queryizable), so it accepts the function. However, the following code

would give a compiler error:

134

fun overAgePlayersReversed() {

query { for (p <- players)

where (p.age > 16)

[(name = reverse(p.name))] } # ERROR!

}

This is because the reverse function has no SQL equivalent, and so no query is

equivalent to this expression.

Now, it takes nine players to make a baseball team, but some “teams” in

Alice’s league are short of players. One way to find them is to collect, for each

team, a team roster (list of players) and then filter to those with a roster of size

at least nine. She needs to generate a list of players that belong to a “short”

team, to inform them that they won’t be able to play this season. She writes the

following code:

fun teamRoster(name) {

for (p <- players)

where (p.team == name)

[(playerName=p.name)]

}

fun unusablePlayers() {

query {

var teamRosters =

for (t <- teams)

[(name = t.name,

roster = teamRoster(t.name))];

for (t <- teamRosters)

where (length(t.roster) < 9)

t.roster

}

}

(Recall that the for-comprehension takes the union of the collections pro-

duced by the body, so the last comprehension in this code takes the union

of the rosters of all the short-handed teams.) This expression is equiv-

alent to an SQL query, although not in a direct way, since it uses an

intermediate data structure that is nested (the variable teamRosters has

type [(name:String, roster:[(playerName:String)])]), and this is not sup-

135

ported by SQL. But since the final result is flat, our analysis accepts the query-

bracketed expression and translates it into an equivalent SQL query, such as

this one:

select t.name as team, p.name as player

from players as p, teams as t

where ((select count(*) from players as p2

where p2.team = t.name) < 9)

In this latest example, the query compiler will effectively inline the call to

teamRoster at runtime when forming the query corresponding to the query

block in unusablePlayers. Functions called from within query brackets, such as

teamRoster, do not need to be wrapped in query brackets, since it is only when

they are used inside some query that the queryizability requirement appears.

This way, teamRoster can be used equally well within or without a query.

Suppose now that Alice wishes to abstract the query condition on teams. That

is, she wishes to write a function which accepts as argument a predicate, one that

selects certain teams based on their rosters, and produces a list of the player-

records belonging to those teams. With the following code, the query translator

will produce a single SQL query each time playersBySelectedTeams is invoked:

fun playersBySelectedTeams(pred) {

query {

var teamRosters =

for (t <- teams)

[(name = t.name,

roster = teamRoster(t.name)])];

for (t <- teamRosters)

where (pred(t.roster))

t.roster

}

}

This type of abstraction is particularly difficult to achieve in SQL, since the team

rosters themselves cannot be explicitly constructed in SQL as part of a query.

SQL places restrictions on how subqueries can be used (For example, in various

contexts they must return just one column, just one row, or both) and has a non-

orthogonal syntax so that the subquery itself must be changed depending on how

136

it is used. Therefore, it may not be possible to implement this function simply as

an SQL query string with “holes” for the predicate to be inserted into.

The compiler will ensure that any argument passed as pred is itself a query-

izable function. If any call site tries to pass a non-queryizable predicate, it pro-

duces a compiler error.

For example, if Alice wants to apply playersBySelectedTeams to a predicate

shortTeam, as follows,

playersBySelectedTeams(shortTeam)

this will be accepted if the definition of shortTeam is as follows

fun shortTeam(roster) {

length(roster) < 9

}

but will produce an error if we try to produce some output within shortTeam,

like this:

fun shortTeam(roster) {

print(toString(roster));

length(roster) < 9

}

The compiler will mark this definition unqueryizable, preventing it from being

passed as a parameter to playersBySelectedTeams. The latter shortTeam func-

tion is still a perfectly good function, however, usable in other contexts.

How it works The recipe for compiling abstractable, higher-order language-

integrated queries can be summarized as follows:

1. At compile time,

(a) Check statically that query expressions have flat relation type,

(b) Use a type-and-effect system to determine that query expressions are

pure, and

(c) Associate with each queryizable expression two representations, one

used for direct evaluation and one used for queryization.

137

2. At runtime, to execute an expression via SQL,

(a) insert the values for any free variables, forming a closed expression,

and

(b) reduce the expression to eliminate intermediate structures (that is,

functions and nested data structures); this produces a normal form

directly translatable to SQL.

Road map The rest of this chapter: (§5.2) defines a source language (a model of

an impure functional language with comprehensions), (§5.3) gives a translation

from this language to SQL, by rewriting terms into a normalized sublanguage

which embeds directly into SQL, (§5.4) proves the correctness of the translation,

(§5.5) extends to the language with recursion, and then (§5.8) gives the history

of language-integrated query and query-unnesting.

5.2 The language

The source language resembles the core of an ordinary impure functional pro-

gramming language, and is also a conservative extension of the (higher-order)

Nested Relational Calculus with side-effects and a “query” annotation. Its gram-

mar is given in Figure 5.1. All the term forms are pure, without side-effects,

except for the primitives, ⊕, which may be given types with side-effects.

The terms [M], []and M]N represent bag (multiset) operations: singleton

construction, the empty bag, and bag-union. The bag comprehension for(x ← L)M

computes the union of the bags produced by evaluating M in successive environ-

ments formed by binding x to the elements of L in turn. A table handle table s : T

denotes a reference to a table, named s, in some active database connection; T

designates the effective type of the table. In keeping with the flatness of SQL

tables, we require that each table must have relation type (see definition below).

The conditional form if B then M else N evaluates to the value of either M or

N depending on the value of B.

138

terms B,L, M, N ::= [M]| []| M]N
| for (x ← L) M
| table s : T
| if B then M else N
| (

−−−−→
l = M) | M.l

| λx.N | LM | x | c
| ⊕(~M)
| empty(M)
| query M

primitives ⊕
table names s, t
field names l

types T ::= o | (−−→l : T) | [T]| S e→ T
base types o ::= bool | int | string

atomic effects E ::= noqy | · · ·
effect sets e a set of atomic effects

Figure 5.1: Source language.

Records are constructed as a parenthesized sequence of field-name–term pairs

(
−−−−→
l = M) and destructed with the field projection M.l. When speaking of a record

construction (
−−−−→
l = M) we will indicate the immediate subterms by subscripting the

metavariable M with labels so that Ml is a field of (
−−−−→
l = M) for each l ∈~l. Similarly

for record types (
−−→
l : T) the field types will be indicated Tl when l ∈~l.

Functional abstraction λx.N and application LM are as usual. Variables are

ranged by x, y, z and other italic alphabetic identifiers, but c ranges over con-

stants.

The language is equipped with a suite of primitive operations, ranged by ⊕,

which must appear fully-applied (this is not a significant restriction since one

may abstract over such expressions). The primitives must include the boolean

negation operation (¬). The (¬) operator is never recognized, only produced, by

the rewrite system.

The form empty(M) evaluates to a boolean indicating whether the bag denoted

139

by M is the empty bag or not.

The form query M forms a term which evaluates to the same value as M but

which operationally must evaluate as an SQL query.

We assume that all bound variables in the source program are distinct.

Terms are assigned types which can be: base types ranged by o, record types

(
−−→
l : T) where each field label l is given a type Tl , bag types [T] and function

types S e→ T, where S is the function domain, T is the range, and e is a set

of effects that the function needs permission to perform. The type system is

monomorphic, so for example each appearance of the empty bag []must be given

some particular concrete type. Adding polymorphism presents some difficulties

of its own and is left for future work.

Programming languages typically have something like a list type as primitive

but bags are only provided, if at all, through a library implementation. To imple-

ment the results of this chapter, then, it is necessary to choose such a bag type

and endow it with “primitive” status. List-typed (and array-typed) expressions

cannot be treated by the methods given here, since they may use order-aware

operations (such as head, tail, and ordinal indexing) that don’t translate to the

database. (But it may be possible to eliminate intermediate list-typed data by

methods similar to those of this chapter.) Certain order-aware operations are

important in database querying, such as SQL’s order by clauses and the widely

available limit and offset features. They might be handled by extending these

results, but this is future work.

Effects are here considered abstractly: E ranges over some arbitrary set of

effects, which includes at least an effect noqy (for “not a query”) and may include

flags representing other runtime actions such as I/O or reference-cell mutations.

Every effect should represent some kind of runtime behavior that has no SQL

equivalent; we use the distinguished effect noqy to mark nontranslatable opera-

tions when no other effect presents itself.

For this chapter, the single effect noqy is all we need, but this general treat-

ment shows that we can mix this with other effect analyses. Since we only need

the one effect, it would be enough to replace the effect sets with a simple flag

140

e ::= qy | noqy with an operation (∪) such that qy∪qy = qy, noqy∪ e = noqy and

e∪noqy= noqy.

Every primitive ⊕ must either have an SQL equivalent ⊕db or else carry an

effect annotation (perhaps the catch-all noqy). The SQL equivalent is a macro

which expands to some combination of primitives available in SQL. Thus prim-

itives need not be in one-to-one correspondance with real SQL operations. We

also insist that primitives have basic argument types and basic result type, or

else have an effect annotation.

To be perfectly clear, this document defines the terms “row type” and “relation

type” as follows:

Definition (Row and Relation Types). A row type is a type of the form (
−−−→
l = o),

that is, a record each of whose fields has some base type. A relation type is a type

of the form [T]where T is a row type.

(This meaning of “row type” should not be confused with the completely differ-

ent term “row types” for polymorphically extensible records [Pottier and Rémy,

2005]. The name “row” here evokes the rows of a database table.)

NRC Comparison Compare the given language with the Nested Relational

Calculus (NRC) as given by Wong [1996], shown in Figure 5.2. The two languages

are nearly the same. Some apparent differences are only notational. NRC’s

comprehension form
⋃

{M | x ∈ L} is identical to ours, for (x ← L) M. The NRC

literature uses set notation, { }, {M}, and M ∪N, but they can denote any of the

extended monads for bags, sets or lists. This chapter treats only bags; some of

the transformations examined here do not preserve order and hence lists present

some difficulty. We write table handles explicitly as table s : T, while NRC uses

free variables to refer to tables.

NRC uses tuples while we use records, a mild generalization. And our lan-

guage extends NRC with the assertion for query-translatability, query M.

The calculus of this chapter includes in its grammar an arbitrary set of prim-

itives (ranged by the symbol ⊕) while NRC, at its core, includes no operations;

141

This work NRC
LM λx.N x LM λx.M x

if B then M else N if B then M else N
empty M empty M

c c
for (x ← L) M

⋃
{M | x ∈ L}

[] [M] M]N {} {M} M∪N
table s : T x

(
−−−−→
l = M) M.l () (L, M) π1 π2

⊕(
−→
M)

M = N
query M

Figure 5.2: Comparing with Nested Relational Calculus.

instead they are normally treated as extensions.

Wong’s formulation of NRC includes an equality test at each type; we lump

this under the primitives. Wong [1996] shows how to implement equality at other

types in terms of the base equality.

Type-and-effect system

The static type-and-effect system for queryizability analysis is given in Figure 5.3.

It is close to a standard type-and-effect system along the lines of Talpin and Jou-

velot [1992] and their predecessors Gifford and Lucassen [1986] and Lucassen

and Gifford [1988].

The judgment Γ ` M : T ! e can be read “With variables of types as in con-

text Γ, the term M has type T and may perform effects in the set e.”

The system permits no recursion, and thus is analogous to simply-typed λ-

calculus. We add recursion later, in Section 5.5.

The type of each constant c is given by Tc, which must be a base type. Con-

stant values at complex type can, of course, be constructed explicitly. Each prim-

itive has a given type, denoted by a judgment ⊕ : S1 ×·· ·×Sn
e→ T.

An immediate type annotation is required on table expressions. This may

142

.

Γ` c : Tc ! ∅ (T-CONST)

Γ, x : T ` x : T ! ∅ (T-VAR)

Γ, x : S ` N : T ! e′

Γ`λx.N : S e′→ T ! ∅
(T-ABS)

Γ` L : S e→ T ! e′ Γ` M : S ! e′′

Γ` LM : T ! e∪ e′∪ e′′
(T-APP)

⊕ : S1 ×·· ·×Sn
e→ T

Γ` Ml : Sl ! e l

Γ`⊕(~M) : T ! e∪⋃
l∈~l e l

(T-OP)

Γ` M : T ! ∅
T has the form [(

−−→
l : o)]

Γ` query M : T ! ∅
(T-DB)

T has the form [(
−−→
l : o)]

Γ` (table t : T) : T ! ∅
(T-TABLE)

Γ` M : [S]! e
Γ, x : S ` N : [T]! e′

Γ` for (x ← M) N : [T]! e∪ e′
(T-FOR)

Γ` Ml : Tl ! e l for each l ∈~l
Γ` (

−−−−→
l = M) : (

−−→
l : T) !

⋃
l∈~l e l
(T-RECORD)

Γ` M : (
−−→
l : T) ! e (l : Tl) ∈ (

−−→
l : T)

Γ` M.l : Tl ! e
(T-PROJECT)

Γ` []: [T]! ∅ (T-NULL)

Γ` M : T ! e

Γ` [M]: [T]! e
(T-SINGLETON)

Γ` M : [T]! e Γ` N : [T]! e′

Γ` M]N : [T]! e∪ e′
(T-UNION)

Γ` M : [T]! e

Γ` empty(M) : bool ! e
(T-EMPTY)

Γ` L : bool ! e
Γ` M : T ! e′ Γ` N : T ! e′′

Γ` if L then M1 else M2 : T ! e∪ e′∪ e′′
(T-IF)

Γ` M : T ! e e ⊆ e′

Γ` M : T ! e′
(T-EFF-WEAKENING)

Figure 5.3: Type-and-effect system.

143

seem a nuisance; in fact it is not strictly necessary, since an algorithm could

infer the type at which the table is used. As a pragmatic matter, however, it

provides a direct way for the programmer to check whether the usage type of

a table agrees with the underlying table’s schema type in the DBMS. Ensuring

such agreement is beyond the scope of this theory; but at least this immediate

type annotation permits a simple source-level check, where otherwise it would

be necessary to run type inference first.

5.3 Making Queries

To make queries from the source language, we will rewrite source terms to a

sublanguage which embeds easily in our SQL subset.

In this section we first examine the sublanguage and its relationship to our

SQL fragment, then turn to the rewrite system.

The complete translation from source language to SQL is defined on terms

M for which query M is well-typed. We will give a normalizing rewrite relation

 and a total function �−� on its normal forms. To translate a term M, first

normalize M ∗ V using the rewrite system, then apply the �−� function to V to

get an SQL query Q = �V �.

SQL-like sublanguage Our chosen sublanguage is as follows:

(normal forms) V ,U ::= V]U | []| F

(joined relations) F ::= for (x ← table s : T) F | Z

(filtered relations) Z ::= if B then Z else[]| [R]| table s : T

(row forms) R ::= (
−−−→
l = B) | x

(basic expressions) B ::= if B thenB′ elseB′′ | empty(V) |
⊕(~B) | x.l | c

Observe that the “normal form” expressions ranged by V all have relation type:

bag of record of base type, or [(
−−→
l : o)].

144

SQL fragment Our target SQL fragment is as follows:

Q,R ::= Q union all R | S

S ::= select ~c from
−−−−→t as x where e

t (table name)

c ::= e as l | x.∗
e ::= casewhen e then e′ else e′′ end |

c | x.l | e∧ e′ | ¬e | exists(Q) | ⊕(~e)

This includes all unions of queries on an inner join of zero or more tables, with

result and query conditions taken from some given algebra of operations, in-

cluding field projection, boolean conjunction, negation, the exists operator, and

conditionals case . . .end.

SQL translation Now the type-sensitive function �−� (Figure 5.4) translates

each closed term in the sublanguage directly into a query. Source phrases in V

translate to those in target grammar Q, those in Z and F translate into S, those

in R translate into
−−−→
e as l, and those in B translate into e. In two cases, those

for empty lists and for table handles, the translation depends on the type of the

source term; this allows listing the right columns in the select clause of the target

query.

When we write a from clause with ∅, as in select
−−−−→
e as l from ∅ where B, we

indicate the SQL query that omits the from clause.

(A fine point: SQL has no way of selecting an empty set of result columns

in a select clause; to translate a singleton bag of a nullary record, [()], we need

to offer some dummy value, or *, as the result column. An implementation can

supply any such select clause, but should be consistent since unions of queries

with different result columns are ill-typed.)

Because we assume that all bound variables in the source program are dis-

tinct, there will be no clashes among the table aliases (the identifiers following

the as keywords) produced by this translation.

145

�V]U� = �V � union all �U�
�[]: [(

−−→
l : T)]� = select

−−−−−→
null as l from∅where false

�for (x ← table s : T) F� = select
−−−→
e as l from sas x,−−−→tas ywhereB

where (select
−−−→
e as l from

−−−→tas ywhereB)= �F�
�if B then Z else[]� = select

−−−→
e as l from~twhereB′∧�B�
where (select

−−−→
e as l from~twhereB′)= �Z�

�table s : [(
−−→
l : o)]� = select

−−−−→
s.l as l from swhere true

�[R]� = select �R� from∅where true

�(−−−→l = B)� = −−−−−→�B�as l
�x� = x.∗

�if B thenB′ elseB′′� = casewhen �B� then �B′�else �B′′�end

�empty(V)� = ¬exists(�V �)
�⊕(~B)� = ⊕db(

−−→�B�)
�x.l� = x.l
�c� = c

Figure 5.4: Translation from normalized sublanguage to SQL.

146

Rewrite rules The translation of source terms into the SQL-isomorphic sub-

language is given as a strongly-normalizing rewrite system (Figure 5.5). We

write M[L/x] for the substitution of the term L for the free variable x in the term

M. The rules are type-sensitive; we assume that every term has an attached

type, but we only write the type for the topmost term on the left-hand side of the

rules because this is the only one we need to look at to determine applicability of

the rule.

The only type-sensitive rules are IF-SPLIT, IF-RECORD, and EMPTY-FLATTEN.

IF-SPLIT turns a choice between two bags (an operation with no direct analogue

in SQL) into a union of two oppositely-guarded bags. At record type the IF-

RECORD rule applies, which turns a choice between two records into a record of

choices at each field. The APP-IF rule, although it is not type-sensitive, serves to

eliminate conditionals at function type, provided they are applied, by moving the

application inside the conditional, giving a conditional at the result type. The

EMPTY-FLATTEN rule ensures that the argument to empty has relation type and

so can be modeled as an SQL subquery; it effectively discards any row data in

the argument, while preserving its length.

These rules may duplicate or eliminate side-effects, but we intend to apply

them only to pure terms. We will show later that the rules preserve purity.

Digression: SQL subqueries? Several of the rules may seem unnecessary

if we are permitted to use SQL subqueries. For example, why employ the FOR-

ASSOC rule if we can write an SQL query that uses a nested SQL select statement

in its from clause? After all, we could more directly implement the expression

for (y← for (x ← table s : T)[(b = x.a)])[(c = y.b)]

with this SQL:

select y.b as c from (select x.a as b from s as x) as y.

In this case, the nested comprehension became a nested subquery. So why in-

clude FOR-ASSOC?

147

(λx.N)M : T N[M/x] (ABS-β)
for (x ← [M]) N : T N[M/x] (FOR-β)

(
−−−−→
l = M).l i : T Mi (RECORD-β)

for (x ← []) M : T [] (FOR-ZERO-SRC)
for (x ← N)[]: T [] (FOR-ZERO-BODY)

for (x ← for (y← L) M) N : T for (y← L) (for (x ← M) N) if y 6∈ FV(N)
(FOR-ASSOC)

for (x ← M1]M2) N : T for (x ← M1) N] for (x ← M2) N
(FOR-UNION-SRC)

for (x ← M) (N1]N2) : T for (x ← M) N1] for (x ← M) N2

(FOR-UNION-BODY)
for (x ← if B then M else[]) N : T if B then (for (x ← M) N)else[]

(FOR-IF-SRC)
(if B thenL elseL′)M : T if B thenLM elseL′M (APP-IF)
if B then M else N : (

−−→
l : T) (

−−−→
l = L) (IF-RECORD)

where L l = if B then M.l else N.l for each l ∈~l
if B then M else N : [T] if B then M else[] if N 6= []

] if¬B then N else[] (IF-SPLIT)
if B then[]else[]: T [] (IF-ZERO)

if B then (for (x ← M) N)else[]: T for (x ← M) (if B then N else[]) (IF-FOR)
if B then M]N else[]: T if B then M else[] (IF-UNION)

] if B then N else[]

empty(M) : T empty(for (x ← M)[()])
if M is not relation-typed

(EMPTY-FLATTEN)
query M : T M (IGNORE-DB)

Figure 5.5: The rewrite system for normalizing source-language terms.

148

The answer is that such rules are critical to the unnesting of intermediate

data structures. Consider this query which creates an intermediate result of

nested bag-of-bag type, not an SQL-representable type:

for (y← for (x ← table s)[[x]]) y

The expression rewrites using the FOR-ASSOC rule:

for (y← (for (x ← table s)[[x]]) y (FOR-ASSOC)

for (x ← table s) (for (y← [[x]]) y) (β-FOR)

for (x ← table s)[x]

and now the expression is unnested. The FOR-ASSOC rule thus exposes β reduc-

tions which themselves eliminate constructor/destructor pairs and hence reduce

the types of intermediate values.

5.4 Correctness

Soundness

The system is useless if rewriting changes the behavior of terms. In particular,

it would be suspect if rewriting, which is intended to be applied to pure terms,

produced terms with side-effects. This section shows that reduction preserves

types and purity.

Normally, in an effect system with an operational semantics, the reductions

in that semantics preserve types and effects. But since, for this rewrite system,

the rewriting strategy is not specified (rewrites can be made anywhere in a term),

types and effects are not always preserved. Indeed, the rules are only sound for

pure terms, but this is all we plan to use them for—so we’ll show that pure terms

have their purity preserved by reduction.

(The problem is that substitution can modify the effects captured by a func-

tion type. For example suppose M has typing ` M : S ! e with e a non-empty effect

set. We can rewrite (λx.λy.x)M λy.M. The redex types as ` (λx.λy.x)M : T ∅→

149

S ! e while the reduct types as ` λy.M : T e→ S ! ∅: the reduction relocates the

effect, disturbing the type.)

Define a function push which pushes effects into every arrow in a type:

push e′ (S e→ T) = push e′ S e∪e′→ push e′ T

push e′ [T] = [push e′ T]

push e′ (
−−→
l : T) = (

−−−−−−−−−−→
l : (push e′ T))

push e′ o = o

And a function complete which pushes effects into every arrow in a type and

propagates effects in the type downwards:

complete e′ (S e→ T) = complete (e∪ e′) S e∪e′→ complete (e∪ e′) T

complete e′ [T] = [complete e′ T]

complete e′ (
−−→
l : T) = (

−−−−−−−−−−−−−−→
l : (complete e′ T))

complete e′ o = o

Define lifted versions of both of these functions for typing contexts by applying

them to each type in the context.

Now, a typing can be weakened to give the same term a typing with all the

types pushed or completed by any effect.

Lemma 13. If Γ ` M : T ! e then Γ′ ` M : T ′ ! e∪ e′ where Γ′ = complete e′ Γ and

T ′ = complete e′ T.

Proof. By induction on the derivation Γ` M : T ! e. Showing the most interesting

cases:

CASE Γ` x : T ! ∅. Then x : T ∈Γ and then x : T ′ ∈Γ′ where T ′ = complete e′ T. So

Γ′ ` x : T ′ ! ∅. And T-EFF-WEAKENING gives Γ′ ` x : T ′ ! ∅∪ e′ as needed.

CASE Γ ` LM : T ! e. Then Γ ` L : S
e f−→ T ! eL and Γ ` M : S ! eM with e =

e f ∪ eL ∪ eM .

150

By IH, Γ′ ` L : S′ e′f−→ T ′ ! eL∪e′ and Γ′ ` M : S′ ! eM∪e′ where Γ′ = complete e′ Γ,

e′f = e f ∪ e′, S′ = complete (e′∪ e f) S and T ′ = complete (e′∪ e f) T.

And so by T-APP, Γ′ ` LM : T ′ ! eL ∪ eM ∪ e f ∪ e′ as needed.

CASE Γ`λx.N : T ! ∅. Let T = T1
eN→ T2.

So Γ′, x : T1 ` N : T2 ! eN . By IH, Γ′, x : T ′
1 ` N : T ′

2 ! eN ∪ e′ where Γ′ =
complete e′ Γ, T ′

1 = complete (eN ∪ e′) T1, T ′
2 = complete (eN ∪ e′) T2.

By T-ABS, Γ′ `λx.N : T ′
1

eN∪e′→ T ′
2 ! ∅.

And by T-EFF-WEAKENING, Γ′ `λx.N : T ′
1

eN∪e′→ T ′
2 ! eN ∪ e′.

Also T ′
1

eN∪e′→ T ′
2 = complete e′ (T1

eN→ T2).

Lemma 14. If Γ ` M : T ! e then Γ′ ` M : T ′ ! e ∪ e′ where Γ′ = push e′ Γ and

T ′ = push e′ T.

Proof omitted. (Similar to Lemma 13)

Substitution of one effectful term into another gives us a term which might

have the former’s effect on any of its arrows; conservatively, we can derive a type

which contains that effect on any arrow—the effect given by the push function.

Lemma 15. From Γ, x : S ` N : T ! eN

and Γ` P : S ! eP

we get Γ′ ` N[P/x] : T ′ ! eN ∪ eP

where Γ′ = push eP Γ and T ′ = push eP T.

Proof. By induction on the derivation of Γ, x : S ` N : T ! eN .

CASE T-VAR.

Case N = x. The typing is Γ, x : S ` x : T ! ∅ with eN = ∅. Here S = T. So

we have Γ ` P : T ! eP . By Lemma 14, Γ′ ` P : T ′ ! eP where Γ′ ` push eP Γ

and T ′ = push eP T as needed.

Case N = y. The typing is Γ, x : S ` y : T ! ∅ with eN = ∅. Now N[P/x] = y

and so the typing of P becomes Γ` y : T ! eP . By Lemma 14, Γ′ ` y : T ′ ! eP .

151

CASE T-APP.

The typing is

Γ, x : S ` L : U
e f→ T ! eL Γ, x : S ` M : U ! eM

Γ, x : S ` LM : T ! eN

with eN = e f ∪ eL ∪ eM .

By IH,

Γ′ ` L[P/x] : U ′ e′f→ T ′ ! e′L and Γ′ ` M[P/x] : U ′ ! e′M

with U ′ = push eP U , T ′ = push eP T, e′f = e f ∪eP , e′L = eL∪eP , e′M = eM∪eP .

Now by T-APP, Γ′ ` (LM)[P/x] : T ′ ! e′f ∪ e′L ∪ e′M = eP ∪ eN .

CASE T-ABS. If the term is λx.N ′ then the substitution is a no-op and the result

follows from Lemma 14 and T-EFF-WEAKENING. So assume it is λy.N ′

with y 6= x.

The typing is
Γ, x : S, y : T1 ` N ′ : T2 ! eN ′

Γ, x : S `λy.N ′ : T1
eN′→ T2 ! ∅

with T = T1
eN′→ T2.

By IH, Γ′, y : T ′
1 ` N[P/x] : T ′

2 ! e′N ′ ∪ eP with T ′
2 = push eP T2 and (Γ′, y :

T ′
1)= push eP (Γ, y : T1) so T ′

1 = push eP T1.

Then by T-ABS, Γ′ ` λy.N ′ : T ′
1

eN′∪eP−→ T ′
2 ! ∅ with T ′

1
eN′→ T ′

2 = push eP (T1
eN′→

T2) and by T-EFF-WEAKENING, Γ′ `λy.N ′ : T ′
1

eN′∪eP−→ T ′
2 ! eP as needed.

CASE T-EFF-WEAKENING.

The typing is
Γ, x : S ` N : T ! e1

Γ, x : S ` N : T ! e1 ∪ e2

By IH, Γ′ ` M : T ′ ! e1 ∪ eP with Γ′ = push eP Γ and T ′ = push eP T. Then by

T-EFF-WEAKENING, Γ′ ` M : T ′ ! e1 ∪ e2 ∪ eP as needed.

Completion commutes with union in the effect argument.

152

Lemma 16. For any e, e′ and T: complete e (complete e′ T) = complete (e∪ e′) T

and push e (push e′ T)= push (e∪ e′) T.

Proof. By induction on the type.

Completion by an effect subsumes pushing by the same or a lesser effect.

Lemma 17. For any e ⊇ e′ and T, complete e (push e′ T)= complete e T.

Proof. By induction on the type. Take the case S e′′→ T.

complete e (push e′ (S e′′→ T))

= complete (e∪ e′∪ e′′) (push e′ S) e∪e′∪e′′−→ complete (e∪ e′∪ e′′) (push e′ T)

= complete (e∪ e′′) (push e′ S) e∪e′′−→ complete (e∪ e′′) (push e′ T)

= (by IH)

complete (e∪ e′′) S e∪e′′−→ complete (e∪ e′′) T

= complete e (S e′′→ T)

The remaining cases are trivial.

And finally, any reduction produces a term of the same type, completed by the

effect of the term itself.

Lemma 18. If Γ` M : T ! e and M M′ then Γ′ ` M′ : T ′ ! e with Γ′ = complete e Γ

and T ′ = complete e T.

Proof. By induction on M. Take cases on the reduction. We examine only the

most interesting cases.

CASE LM LM′.

The typing is
Γ` L : S

e f→ T ! eL Γ` M : S ! eM

Γ` LM : T ! e = e f ∪ eL ∪ eM

By IH, ΓM ` M′ : S′ ! eM where ΓM = complete eM Γ and S′ = complete eM S.

153

Using Lemmas 13 and 16, we can generalize this to Γ′ ` M′ : S′′ ! e where

Γ′ = complete e Γ and S′′ = complete e S.

Similarly, Γ′ ` L : S′′ e f ∪e−→ T ′′ ! eL where T ′′ = complete e T.

And so by T-APP, Γ′ ` LM′ : T ′′ ! e.

CASE LM L′M.

The typing is
Γ` L : S

e f→ T ! eL Γ` M : S ! eM

Γ` LM : T ! e = e f ∪ eL ∪ eM

By IH, ΓL ` L′ : S′ e′f→ T ′ ! eL where ΓL = complete eL Γ and S′ e′f→ T ′ =
complete eL (S

e f→ T) so e′f = e f ∪ eL, S′ = complete (e f ∪ eL) S and T ′ =
complete (e f ∪ eL) T.

Using Lemmas 13 and 16, we can generalize this to Γ′ ` L′ : S′′ e′′f→ T ′′ ! e

where Γ′ ` complete e Γ, S′′ = complete e S, T ′′ = complete e T and e′′f =
e∪ e f = e

Similarly, Γ′ ` M : S′′ ! eM

And so by T-APP, Γ′ ` L′M : T ′′ ! e′′f ∪ e∪ eM = e.

CASE ABS-β. (λx.N)M N[M/x]. The typing is

Γ, x : S ` N : T ! eN

Γ`λx.N : S
eN→ T ! ∅ Γ` M : S ! eM

Γ` (λx.N)M : T ! eN ∪ eM

with e = eN ∪ eM .

From this by Lemma 15 we get Γ′ ` N[M/x] : T ′ ! eN ∪ eM where Γ′ =
push eM Γ and T ′ = push eM T.

We can also generalize this, using Lemmas 13, 16 and 17, to Γ′′ ` N[M/x] :

T ′′ ! eN ∪ eM where Γ′′ = complete e Γ and T ′′ = complete e T.

CASE λx.N λx.N ′. The typing is Γ`λx.N : S e→ T ! ∅ from Γ, x : S ` N : T ! e.

154

By IH, Γ′, x : S′ ` N ′ : T ′ ! e with Γ′ = complete e Γ, S′ = complete e S and

T ′ = complete e T.

And so by T-ABS, Γ′ ` λx.N : S′ e→ T ′ ! ∅, as needed, noting S′ e→ T ′ =
complete e S e→ T.

The goal is to rewrite closed, pure terms. The next lemma shows that all such

terms have their type and effect exactly preserved by the rewrite system:

Lemma 19. If M M′ and ∅` M : T ! ∅ and T is a relation type then ∅` M′ :

T ! ∅. Moreover M ∗ V gives then ∅`V : T ! ∅.

Proof. A direct consequence of Lemma 18, since relation types contain no arrows

and so T = complete ∅ T.

Totality

For the rewriting to be effective, it must in fact normalize every queryizable term

to a normal form in the domain of the function �−�. This section shows that the

system strongly normalizes: every reduction sequence terminates.

The proof follows the plan of the argument used by Lindley and Stark [2005],

which builds on the “reducibility” method of Tait [1967]. This proof uses some

new tricks, for example to handle the consequences of the fact that some of these

rules duplicate subterms.

Like the usual proof, this one uses “continuations” as a way of bookkeeping

the progress made by certain rules, the so-called “commuting conversion” rules,

which interchange two forms without eliminating any. A continuation can be

thought of as a stack of contexts which need to be eliminated to normalize the

term, along with any contexts that commute with those.

Definition (Continuations). Define a set of continuations as follows:

K ::= Id | K ◦F

F ::= (x)N | (whereB) | (M])

155

The notation K@M denotes filling K with the term M:

Id@M = M

(K ◦ (x)N)@M = K@(for (x ← M) N)

(K ◦ (whereB))@M = K@(if B then M else[])

(K ◦ (M]))@M′ = K@(M]M′)

Definition. The length |K | of a continuation K is the number of for-abstraction

frames that it contains:

|Id| = 0

|K ◦ (x)N| = |K |+1

|K ◦ (whereB)| = |K |
|K ◦ (M])| = |K |

We only count the for-abstraction frames because only they represent contexts

that need to be eliminated. The others are neutral contexts—they don’t react

with what’s placed inside them. In fact, the other frames are only present to

ensure that the continuations are closed under reduction, as we will see in a

moment.

The proof works by showing that terms are reducible, a property stronger

than strong normalization, but more amenable to induction. Intuitively, a term

is reducible if it strongly normalizes in every well-typed context. The reducibil-

ity predicate is indexed by the type, and at each type it is defined in terms of

smaller types. For bag types [T], reducibility is defined in terms of contin-

uations, because we need to track the commuting conversions; for record and

function types, there are no commuting conversions to worry about so we opt

for a simpler (non-inductive) definition. Reducible base-type terms are just the

strongly-normalizing ones.

Definition (Reducibility). For each type T, define a set redT on closed terms of

type T by the following rules:

156

• M ∈ redo (base type) iff M strongly normalizes,

• L ∈ redS→T iff for every M ∈ redS we have that LM ∈ redT .

• M ∈ red(
−−→
l:T) iff for each (l : T) ∈ (

−−→
l : T) we have that M.l ∈ redT

• K ∈ redK[T] iff for every M : T with M ∈ redT we have that K@[M]strongly

normalizes.

• M ∈ red[T] iff for every K ∈ redK[T], K@M strongly normalizes.

We will need some general properties of reducibility.

Lemma 20. There is some reducible term of every type.

Proof. A straightforward induction on the type constructs the term; we begin

with a constant at base type; at type S → T we abstract a reducible N of type T

with a dummy variable x to get λx.N. For bags and records we can construct the

term directly with the singleton and record constructors respectively.

Next, reducibility implies strong normalization (the abbreviation “M s.n.” is

short for “M strongly normalizes”):

Lemma 21. If M ∈ redT then M s.n.

Proof. By induction on T, the type of M:

CASE o. Immediate from the definition of reducibility.

CASE S → T. By the definition of reducibility, MM′ ∈ redT for each M′ ∈ redS,

and then by the induction hypothesis MM′ strongly normalizes. And so its

subterm M strongly normalizes.

CASE (
−−→
l : T). By definition, M.l is reducible for each l ∈~l. Therefore by the IH,

M.l strongly normalizes, and so its subterm M strongly normalizes.

CASE [T]. By the definition of reducibility, Id@M = M strongly normalizes.

Lemma 22. If M ∈ redT and M N then N ∈ redT .

157

Proof. By induction on T, the type of M:

CASE o. If M s.n. then so does its reduct N; this suffices.

CASE S → T. For each M′ ∈ redS, we have that MM′ ∈ redT and MM′ NM′;

then by the inductive hypothesis, NM′ ∈ redT . Since this is true for any

M′ ∈ redS, this satisfies the definition of N ∈ redS→T .

CASE (
−−→
l : T). For each (l : T) ∈ (

−−→
l : T), we have that M.l ∈ redT and M.l N.l;

then by the inductive hypothesis, N.l ∈ redT . Since this is true for each

l ∈~l, this satisfies the definition of N ∈ red(
−−→
l:T).

CASE [T]. For any K ∈ red[T], we have that K@M strongly normalizes; as a

reduct thereof, K@N strongly normalizes. Since this is true for any K ∈
redK[T], this statisfies the definition of N ∈ red[T].

Definition (Term contexts). A term context is a term with zero or more holes. A

hole [] can stand in a context anywhere a term otherwise could. The notation

C[M] denotes the term formed by plugging M into every hole in C.

Please take note of the distinction between context brackets ([]) and empty-

list brackets ([]).

Observation. Continuations K are a subset of contexts C. The continuation

plugging operation K@M is a special case of context plugging C[M].

Now, we will need to speak of reductions taking place “within the continua-

tion part” of a plugged pair like K@M, so we will develop a notion of reduction

for continuations. First we define reduction of contexts.

Definition (Context reduction). If C[M] C′[M] for all M then we write C

C′. Then given a reduction C[M] C′[M] for some M, we can say the reduction

is within C.

Definition (Reduction-in-context). If we have M M′ then we say that the

reduction C[M] C[M′] is within M.

158

Definition (Reduction at the interface). If C[M] reduces and the reduction is

not within C and not within M then it is at the interface between C and M.

Note that reductions at the interface could actually alter the content of M.

For example, if C = (λx.C′)N then C[M] C′[N/x][M[N/x]]. This reduction is at

the interface but can involve changes in both C′ and M.

Definition (Neutral term-context pairs). A term M is neutral for the context C

if the only reductions applicable to C[M] are those that are applicable within C

or within M. Otherwise it is active for the context C.

Since continuations are contexts, we can speak of a reduction “within K .”

However, reduction on continuations (defined by reduction of contexts) is not

closed: given a continuation K = C, we may have C C′ where C′ is not a con-

tinuation.

This infelicity is palliated by Lemma 23 which, for any term K@P with K =
C C′, produces a new continuation K ′ that we can use in place of C′, because

C′[P] = K ′@P. The continuation K ′ will depend, however, on P, so it is not a

general replacement for C′.

Lemma 23. When K C′, then for each term P there exists K ′ such that C′[P]=
K ′@P and |K | ≥ |K ′|.

Proof. Take cases on the reduction K C′.

CASE K = K ′ ◦ (x)(M]N) (FOR-UNION-BODY)

K ′@((for (x ← []) M)] (for (x ← []) N)).

Then

(K ′@((for (x ← P) M)] (for (x ← P) N)))

= (K ′ ◦ ((for (x ← P) M)])◦ (x)N)@P.

And |K ′ ◦ (x)(M]N)| = |K ′ ◦ ((for (x ← P) M)])◦ (x)N| as needed.

CASE K = K ′ ◦ (x)N ◦ (y)N ′ K ′ ◦ (y)(for (x ← N ′) N) (FOR-ASSOC)

159

The reduct is already a continuation and

|K ′ ◦ (x)N ◦ (y)N ′| ≥ |K ′ ◦ (y)(for (x ← N ′) N)|.

CASE K = K ′ ◦ (x)N ◦ (M]) K ′ ◦ ((for (x ← M) N)])◦ (x)N (FOR-UNION-SRC)

The reduct K ′ ◦ ((for (x ← M) N)])◦ (x)N is already a continuation and the

length is unchanged.

CASE K = K ′ ◦ (whereB)◦ (x)N K ′ ◦ (x)(if B then N else[]). (IF-FOR)

The reduct is already a continuation and the length is unchanged.

CASE K = K ′ ◦ (x)N ◦ (whereB) K ′ ◦ (whereB)◦ (x)N. (FOR-IF-SRC)

The reduct is already a continuation and the length is unchanged.

CASE K = K ′ ◦ (whereB)◦ (M]) (IF-UNION)

K ′ ◦ ((if B then M else[])])◦ (whereB)

The reduct is already a continuation and the length is unchanged.

Other reductions are of the form K = (K ′ ◦F) C′′[F]. Then by the IH there is

a K ′′ with C′′[F[M]] = K ′′@F[M] = (K ′′ ◦F)@M and |K ′| ≥ |K ′′|. Thence |K ′ ◦F| ≥
|K ′′ ◦F| as needed.

Now when we say that a reduction of K@M is “within K ,” we mean that

K C and that C[M] = K ′@M for some K ′. The fact that |K | ≥ |K ′| in this case

means that we can use |K | as part of an induction metric without fear that it will

increase during reduction.

Continuing on, the definition of neutrality for a given context specializes to

neutrality for a given continuation.

Definition (Neutral term-continuation pairs). A term M is neutral for the con-

tinuation K if the only reductions applicable to K@M are those within K (i.e.

K C′ for some C′) or within M.

More generally, we want to recognize terms that are simply neutral toward

continuations:

160

Definition (Neutral terms). A term is neutral if it is neutral for all continua-

tions.

Now then, we will use a few general properties of reduction, as follows:

Definition. Write maxred(M) for the maximum length of any reduction sequence

from M, defined only for strongly normalizing M.

Lemma 24. If M strongly normalizes and M N, then maxred(M)>maxred(N).

Proof. If the reduction is along a maximal path, then the reduct’s maximal re-

duction sequence is shorter by 1. If it is along some path strictly shorter than

a maximal one, then the reduct’s maximal reduction sequence is also strictly

shorter.

Lemma 25. If M is neutral and each reduction M N has N ∈ redT then M ∈
redT .

Proof. By induction on the type T:

CASE o. Every reduct of M s.n. so M s.n. and M ∈ redo by def.

CASE S → T. To show: that MM′ ∈ redT for each M′ ∈ redS. Examine reductions

of MM′. Because M is neutral, every reduction is within M or within M′.

Every reduct of M′ is reducible by Lemma 22. Thus every reduct of MM′

is an application of a reducible term at S → T to a reducible term at S

and is reducible. Because applications are neutral, the IH applies and

MM′ ∈ redT . This satisfies the definition of M ∈ redS→T .

CASE (
−−→
l : T). To show: that M.l ∈ redT for each l : T ∈ −−→

l : T. Examine reductions

of M.l. Because M is neutral, every reduction is within M. Thus every

reduct of M.l is a projection of a reducible term and hence is reducible.

Because projections themselves are neutral, the IH applies and M.l ∈ redT .

This satisfies the definition of M ∈ red(
−−→
l:T).

161

CASE [T]. Given K ∈ redK[T] we want to show that K@M s.n. By induction on

maxred(K). Consider a reduction of K@M. If it is within M then M N.

By hypothesis N ∈ red[T] so K@N strongly normalizes. Since M is neutral,

there are no reductions at the interface. And since K is reducible, each

of its reducts, say K ′, is reducible, and so by the inner IH K ′@M strongly

normalizes. Thus all reducts of K@M s.n. and hence M ∈ red[T].

Definition. Write size(M) for the size of the term M, that is, one plus the sum

of the sizes of the immediate subterms.

—F—

Now comes the heavy lifting: the next lemmas show for each syntactic form

that it is strongly-normalizing (when its subterms are) or that it is reducible

(when its subterms are).

Lemma 26. If K@M strongly normalizes then K@[] strongly normalizes.

Proof. By induction on (|K |,maxred(K@M)). Take cases on the reducts of K@[]:

CASE (K ′ ◦ (x)N)@[] K ′@[], in the case where K = K ′ ◦ (x)N. This strongly

normalizes, by the IH, noting |K | > |K ′|.
CASE (K ′ ◦ (where B))@[] K ′@[], in the case where K = K ′ ◦ (where B). This

strongly normalizes, by the IH, noting |K | > |K ′|.

All other reductions are within K , and so reduce maxred(K@M), and thus each

strongly normalizes, by the IH.

Lemma 27. If M ∈ redT then [M]∈ red[T].

Proof. Given K ∈ redK[T], we want to show that K@[M]s.n. This follows directly

from the definition of redK[T] and the hypothesis M ∈ redT .

Lemma 28. If N[P/x] ∈ redT for every P ∈ redS then λx.N ∈ redS→T .

162

Proof. Given P ∈ redS, we want to show that the application (λx.N)P ∈ redT .

Since applications are neutral, it suffices (by Lemma 25) to show that all the

application’s reducts are in redT . This follows by induction on maxred(N) +
maxred(P). Take cases on the reducts:

CASE (λx.N)P N[P/x] ∈ redT by hypothesis.

All other reductions are within N or P, preserving the respective reducibility

property, by Lemma 22, and these reductions decrease the induction metric.

Lemma 29. Given (
−−−−→
l = M) : (

−−→
l : T), if Ml ∈ redTl for each l ∈~l then (

−−−−→
l = M) ∈ red(

−−→
l:T).

Proof. By induction on
∑

M∈~M maxred(M). We show that for any field l ∈~l with

type Tl , the projection (
−−−−→
l = M).l ∈ redTl . Since projections are neutral, it suffices

to show that all the reducts are in redTl . The important case is (
−−−−→
l = M).l Ml

(by RECORD-β) which by hypothesis is in redTl . Any other reductions are within

one of the ~M and so the induction hypothesis applies.

Lemma 30. Given a continuation K and terms M and N, if K@M and K@N

strongly normalize then K@(M]N) strongly normalizes.

Proof. By lexicographic induction on (|K |,maxred(K@M)+maxred(K@N)). For

the base case, when K = Id, the strong normalization of M] N follows directly

from that of M and N, since no reduction applies to a union at the top level. Now

take cases on the reducts of K@(M]N):

CASE K@(M]N) (FOR-UNION-SRC)

K ′@((for (x ← M) L)] (for (x ← N) L)), when K = K ′ ◦ (x)L.

The application K ′@(for(x ← M)L)= K@M strongly normalizes by hypothe-

sis and likewise does K@N. By IH, then, K ′@((for(x ← M)L)](for(x ← N)L))

strongly normalizes. (IH applies because |K | > |K ′|.)
CASE K@(M]N) (IF-UNION)

K ′@((if B then M else[])] (if B then N else[])), when K = K ′ ◦ (whereB).

The same reasoning applies as in the first case.

163

All other reductions are within K , M or N, thus reducing the induction metric.

Lemma 31. If K@(M] N) strongly normalizes, then K@M and K@N strongly

normalize, and

maxred(K@(M]N))≥maxred(K@M), and

maxred(K@(M]N))≥maxred(K@N).

Proof. We will show that any single reduction in K@M has a corresponding

nonempty reduction sequence in K@(M] N) which produces a new term of the

same form (some K ′@(M′] N ′)). Therefore no reduction sequence of K@M is

longer than the maximal one of K@(M]N) and in particular K@M must strongly

normalize.

We construct the corresponding reduction sequence on K@(M]N) as follows.

A reduction in K@M must be in K , in M, or at the interface. If it is in K or in

M, the reduction applies directly to K@(M] N). If it is at the interface, then

K@M = (K ′ ◦F)@M K ′@M′. Take cases on the form of F:

CASE F = (x)N ′. We have F@M = for (x ← M) N ′ M′.

(K ′ ◦ (x)N ′)@(M]N)

 K ′@((for (x ← M) N ′)] (for (x ← N) N ′))

 K ′@(M′] (for (x ← N) N ′))

CASE F = (whereB). We have F@M = if B then M else[] M′

(K ′ ◦ (whereB))@(M]N)

 K ′@((if B then M else[])] (if B then N else[]))

 K ′@(M′] (if B then N else[])).

CASE F = (M′]). No reductions apply at this interface.

A symmetrical argument applies for K@N.

164

Lemma 32. If M ∈ red[T] and N ∈ red[T] then M]N ∈ red[T].

Proof. Immediate from Lemma 30.

Lemma 33. Given a continuation K : [T], a strongly normalizing term L : S, and

a frame (x)N : [S]→ [T], if K@(N[L/x]) strongly normalizes then K@(for (x ←
[L]) N) strongly normalizes.

Proof. By lexicographic induction on

(|K |,maxred(K@(N[L/x])+maxred(L),size(N)).

Take cases on the reducts of K@(for (x ← [L]) N), to show that each strongly

normalizes:

CASE K@(for (x ← [L]) N) K@(N[L/x]) (FOR-β)

This s.n. by hypothesis.

CASE K@(for (x ← [L])[]) (FOR-ZERO-BODY)

K@[] if N = [].

This s.n. by Lemma 26.

CASE (K ′ ◦ (y)M)@(for (x ← [L]) N) (FOR-ASSOC)

K ′@(for (x ← [L]) (for (y← N) M)), if K = K ′ ◦ (y)M,

with x 6∈ FV(M).

By the ind. hyp., using K ′ and for (y← N)M for K and N, resp., we get that

K@(for (x ← [L]) for (y← N) M) s.n., as required. To see that the IH applies,

note that

K ′@((for (y← N) M)[L/x])= K@(N[L/x])

by hypothesis (remembering x 6∈ FV(M)), and that |K | > |K ′|.
CASE K@(for (x ← [L]) (N1]N2)) (FOR-UNION-BODY)

K@((for (x ← [L]) N1)] (for (x ← [L]) N2)) if N = N1]N2.

Because K@(N1] N2)[L/x] s.n. we know K@N1[L/x] and K@N2[L/x] s.n.

(Lemma 31).

165

Then by the IH, K@(for (x ← [L]) N1) and K@(for (x ← [L]) N2) s.n. (IH

applies because the size of N decreases and preceding induction-metric

components don’t increase.) Finally, by Lemma 30, we conclude that

K@((for (x ← [L]) N1)] (for (x ← [L]) N2)) s.n.

CASE (K ′ ◦ (whereB))@(for (x ← [L]) N) (IF-FOR)

K ′@(for (x ← [L]) (if B then N else[])), if K = K ′ ◦ (whereB).

We have that x 6∈ FV(B) by the assumption that all bound variables are

distinct. Therefore

K ′@((if B then N else[])[L/x]) = K ′@(if B then N[L/x]else[])

= K@(N[L/x])

and this strongly normalizes by hypothesis.

Then by the IH, K ′@(for(x ← [L])(if B then N else[])) s.n. IH applies because

|K | > |K ′|.

Any other reduction takes place within K , N or L, so the claim for those cases

follows by the IH, reducing the induction metric.

Lemma 34 (Reducibility of for terms). If M ∈ red[S] and N is such that N[L/x] ∈
red[T] for any L ∈ redS then for (x ← M) N ∈ red[T].

Proof. Given any K ∈ redK[T] we need to show that K@(for (x ← M) N) s.n. By

hyp., for any K ′ ∈ redK[S], we know that K ′@M s.n. Pick K ′ = K ◦ (x)N to show

this condition, that K ′ ∈ redK[S]. To show this requires showing that K ′@[L],

equivalently K@(for (x ← [L]) N), strongly normalizes, for any reducible L. By

Lemma 33 and hypotheses, this is the case. So K ′@M strongly normalizes, which

is what we wanted to write.

Definition. Define Q-contexts as follows:

Q ::= [] | for (x ←Q) M | for (x ← M)Q | M]Q | if B thenQ else[]

166

Definition. Define a measure |Q| as follows:

|[]| = 0
|for (x ←Q) M| = 1+|Q|
|for (x ← M)Q| = |Q|

|M]Q| = |Q|
|if B thenQ else[]| = |Q|

Definition. Define a function BV(Q), giving the bound variables (over the hole)
of Q as follows:

BV([]) = ∅
BV(for (x ←Q) M) = BV(Q)
BV(for (x ← M)Q) = {x}∪BV(Q)

BV(M]Q) = BV(Q)
BV(if B thenQ else[]) = BV(Q)

Reduction of Q-contexts is just a case of reduction of contexts, so Q C′ iff

Q@M C′[M]. As with K-continuations, we need to be able to refit a Q-context,

when the reduction duplicates the hole, to leave a single hole.

Lemma 35. Whenever Q C′ we have for each P some Q′ such that C′[P] =
Q′@P with |Q| ≥ |Q′| and given a finite set X with X ∩ BV(Q) = ∅, Q′ can be

chosen such that X ∩BV(Q′)=∅.

Proof. By cases on the reduction.

CASE for (y← M]M′)Q (FOR-UNION-SRC)

(for (y← M)Q)] (for (y← M′)Q).

Given P we have

((for (y← M)Q)] (for (y← M′)Q))[P]=
((for (y← M) (Q@P))] (for (y← M′)Q))@P,

with (for (y← M) (Q@P))] (for (y← M′)Q)) a Q-context.

Meanwhile

|for (y← M]M′)Q| = |Q| = |(for (y← M) (Q@P))] (for (y← M′)Q)|

and the bound variables are unchanged.

167

CASE for (y←Q) (M]M′) (FOR-UNION-BODY)

(for (y←Q) M)] (for (y←Q) M′).

Given P we have

((for (y←Q) M)] (for (y←Q) M′))[P]=
((for (y← (Q@P))M)] (for (y←Q) M′))@P,

with the part before the @ a Q-context.

Meanwhile

|for (y←Q) M]M′| = 1+|Q| = |(for (y← (Q@P))M)] (for (y←Q) M′)|

and the bound variables are unchanged.

CASE for (y← M]Q) M′ (FOR-UNION-SRC)

for (y← M) M′] for (y←Q) M′

The reduct is a Q-context, while both redex and reduct have size 1+|Q| and

the bound variables are unchanged.

CASE for (y← M) (M′]Q) (FOR-UNION-BODY)

for (y← M) M′] for (y← M)Q

Similar to previous cases.

CASE if B then for (x ←Q) N else[] (IF-FOR)

for (x ←Q) (if B then N else[]).

The reduct is a Q-context and

|if B then for (x ←Q) N else[]| = 1+|Q| = |for (x ←Q) (if B then N else[])|

and the bound variables are unchanged.

CASE if B then (for (x ← M)Q)else[] (IF-FOR)

for (x ← M) (if B thenQ else[]).

The reduct is a Q-context and

|if B then for (x ← M)Q else[]| = |Q| = |for (x ← M) (if B thenQ else[])|

and the bound variables are unchanged.

168

CASE for (x ← if B thenQ else[]) M (FOR-IF-SRC)

if B then (for (x ←Q) M)else[]

The reduct is a Q-context and

|for (x ← if B thenQ else[]) M| = 1+|Q| = |if B then (for (x ←Q) M)else[]|

and the bound variables are unchanged.

CASE for (x ← if B then M else[])Q (FOR-IF-SRC)

if B then (for (x ← M)Q)else[]

The reduct is a Q-context and

|for (x ← if B then M else[])Q| = |Q| = |if B then (for (x ← M)Q)else[]|

and the bound variables are unchanged.

CASE for (x ← for (y←Q) N ′) N (FOR-ASSOC)

for (y←Q) for (x ← N ′) N

The reduct is a Q-context and

|for (x ← for (y←Q) N ′) N| = 2+|Q| ≥ |for (y←Q) for (x ← N ′) N| = 1+|Q|

and the bound variables are unchanged.

CASE for (x ← for (y← M′)Q) N (FOR-ASSOC)

for (y← M′) for (x ←Q) N

The reduct is a Q-context and

|for (x ← for (y← M′)Q) N| = 1+|Q| = |for (y← M′) for (x ←Q) N|

and the bound variables are unchanged.

CASE for (x ← for (y← M) N)Q (FOR-ASSOC)

for (y← M) for (x ← N)Q

The reduct is a Q-context and

|for (x ← for (y← M) N)Q| = |Q| = |for (y← M) for (x ← N)Q| = |Q|.

This time we use α-renaming to ensure y 6∈ X .

169

CASE if B then M]Q else[] (IF-UNION)

if B then M else[]] if B thenQ else[].

The reduct is a Q-context and

|if B then M]Q else[]| = |Q| = |if B then M else[]] if B thenQ else[]|.

Lemma 36. Given a Q-context Q and terms M and N, if Q@M and Q@N strongly

normalize then Q@(M]N) strongly normalizes.

Proof. Similarly to Lemma 31, by induction on (|Q|,maxred(Q@M)+maxred(Q@N)).

As before, reductions at the interface eliminate frames from Q, pulling them into

the two arguments, and giving us a term of the same form, susceptible to the

inductive hypothesis.

Lemma 37. If Q@(M] N) strongly normalizes, then Q@M and Q@N strongly

normalize, and

maxred(Q@(M]N))≥maxred(Q@M), and

maxred(Q@(M]N))≥maxred(Q@N).

Proof. Similarly to Lemma 30, for any reduction in Q@M or Q@N we can con-

struct a parallel, and no shorter, reduction in Q@(M]N).

The next lemma examines contexts Q that don’t bind any of the variables free

in a term B. This is sufficient since externally we will use this lemma only for Q-

contexts that are also K-continuations, and internally (when using the inductive

hypothesis) the condition is an invariant.

Lemma 38. Given Q@N and B with FV(B)∩BV(Q)=∅ and Q@N and B s.n. then

Q@(if B then N else[]) s.n.

Proof. By induction on (maxred(Q@N)+maxred(B), |Q|,size(N)). Take cases on

the reductions of Q@(if B then N else[]):

170

CASE Q@(if B then (for (x ← M′) N ′)else[]) (IF-FOR)

Q@(for (x ← M′) (if B then N ′ else[])) if N = for (x ← M′) N ′.

The reduct s.n. by the inductive hypothesis, letting Q be Q◦(for (x ← M′)[]

and N be N ′. We have size(N) > size(N ′) and the length of the new Q is

|Q ◦ (for (x ← M′) []| = |Q| while Q@N is unchanged. We have x 6∈ FV(B)

by the assumption of distinct binders. (This is the only case where BV(Q)

changes in applying the IH.)

CASE Q1@(for (x ← [L]) (Q2@(if B then N else[]))) (FOR-β)

Q1@(Q2[L/x]@(if B then N else[])[L/x]) if Q =Q1 ◦ for (x ← [L])Q2.

Because x 6∈ FV(B) we have

Q1@(Q2[L/x]@(if B then N else[])[L/x])=
Q1@(Q2[L/x]@(if B then N[L/x]else[]))

so we show the latter is s.n.

This follows by the inductive hypothesis, letting Q be Q1 ◦ (Q2[L/x]) and N

be N[L/x]. The induction metric decreases because

maxred(Q1@(for (x ← [L]) (Q2@N)))>
maxred(Q1@(Q2[L/x]@(N[L/x]))).

CASE Q′@(for (x ← if B then N else[]) M) (FOR-IF-SRC)

Q′@(if B then (for (x ← N) M)else[] if Q =Q′ ◦ for (x ← []) M.

The reduct s.n. by the inductive hypothesis, letting Q be Q′ and N be

for (x ← N) M. We have Q@N unchanged while |Q| > |Q′|.
CASE Q@if B then N else[] (IF-ZERO)

Q@[] if N = [].

The reduct s.n. by assumption, since Q@[]=Q@N.

CASE Q@(if B then (N1]N2)else[]) (IF-UNION)

Q@((if B then N1 else[])] (if B then N2 else[])) if N = N1]N2.

171

By the inductive hypothesis, we have that Q@(if B then N1 else[]) s.n. and

likewise Q@(if B then N2 else[]). To see that IH applies, note that Q is un-

changed, size(N1)< size(N)> size(N2) and (by Lemma 37)

maxred(Q@N1)≤maxred(Q@N)≥maxred(Q@N2).

Then Lemma 36 combines these two facts to show that

Q@((if B then N1 else[])] (if B then N2 else[])) s.n.

All other reductions are within Q, B or N and so reduce maxred(Q@N)+maxred(B).

We use Lemma 35 to ensure that a reduction in Q@P Q′@P has |Q| ≥ |Q′| and

BV(Q′) does not intersect FV(B).

Lemma 39. If K@N s.n. and B s.n. then K@(if B then N else[]) s.n.

Proof. The set of continuations K is a subset of the continuation-contexts Q, and

in particular BV(K) = ∅. Thus the lemma follows immediately from Lemma 38.

Lemma 40. Given a continuation K : [T]and terms B : bool, M : [T]and N : [T],

if B, K@M and K@N strongly normalizes, then K@(if B then M else N) strongly

normalizes.

Proof. By induction on maxred(B)+maxred(K@M)+maxred(K@N). When N =
[], Lemma 39 applies. So consider the case N 6= []. Take cases on the reducts of

K@(if B then M else N).

CASE The reduct K@(if B then M else[]] if¬B then N else[]) if N 6= [].

Now K@M and K@N s.n. by hyp., so by Lemma 39, K@(if B then M else[])

s.n. and likewise K@(if¬B then N else[]). Then using Lemma 30 we com-

bine these two facts to show that the reduct s.n.

Other reductions are within B, M, N or K , and so reduce the induction metric,

and hence the reducts are s.n. by IH.

172

Lemma 41 (Reducibility of conditionals at bag type). If M ∈ red[T]and N ∈ red[T]

and B strongly normalizes then if B then M else N ∈ red[T].

Proof. Immediate from Lemma 40.

At last we can show that conditionals of any type are reducible.

Lemma 42 (Reducibility of conditionals at any type). If M, N ∈ redT and B s.n.

then (if B then M else N) ∈ redT .

Proof. By induction on T.

CASE [T]. By Lemma 41.

CASE S → T. Given a term M′ reducible at type S, we must show that the

application (if B then M else N)M′ is reducible at T. We show that all its

reducts are reducible. This is by induction on maxred(B)+maxred(M)+
maxred(N)+maxred(M′). Consider the reductions. First

(if B then M else N)M′ if B then MM′ else NM′ : T.

By (outer) IH, this reduct is in redT .

All other reductions are within B, M, N, or M′, producing a term that is

reducible by the (inner) IH.

Because all its reducts are reducible, and applications are neutral, by Lemma 25,

(if B then M else N)M′ and then also if B then M else N are reducible.

CASE (
−−→
l : T).

We must show that for any (l : Tl) ∈ (
−−→
l : T), the projection (if B then M else N).l

is reducible at Tl . We show that all its reducts are reducible. This is by in-

duction on maxred(B)+maxred(M)+maxred(N). Consider the reductions.

First,

(if B then M else N).l (
−−−→
l = L).l (IF-RECORD)

where for each l, L l = if B then M.l else N.l.

173

By (outer) IH, each L l is in redTl , and so by Lemma 29, the construction

(
−−−→
l = L) is in red(

−−→
l:T). By definition, this means that (

−−−→
l = L).l is in redTl .

All other reductions are within B, M, N, producing a term that is reducible

by the (inner) IH.

Because all its reducts are reducible, and projections are neutral, we have

by Lemma 25 that (if B then M else N).l and hence if B then M else N are re-

ducible.

CASE o. All reductions are within B, M or N and strong normalization follows

directly from the hypotheses.

Lemma 43. If M ∈ redT then empty(M) ∈ redbool.

Proof. We merely need to show that empty(M) strongly normalizes. If M is of

relation type then no reductions apply except for those applying within M, which

strongly normalizes. Any normal form V of M has the same type and thus we

have a normal form empty(V) of empty(M).

If M is not of relation type then we apply induction on maxred(M). Consider

the reduct empty(M) empty(for (x ← M)[()]). Now for (x ← M)[()] strongly nor-

malizes by virtue of M ∈ redT (letting K = Id◦ (x)[()]). For any normal form V of

for (x ← M)[()], we know that empty(V) is a normal form, because V is relation

type. Any other reduction is within M and the goal follows by the IH.

Proposition 3 (Reducibility). Given any typed term

y1 : S1, . . . , yn : Sn ` M : T

and corresponding closed terms

L1 ∈ redS1 , . . . , Ln ∈ redSn ,

we have M[
−−→
L/y] ∈ redT .

Proof. By induction on the structure of M.

174

CASE c. Trivially strongly normalizing, hence (because they have base type)

reducible.

CASE table s : T. Already normal; trivial.

CASE yi. Each free variable of M is substituted with a reducible term; trivial.

CASE []. Follows immediately from Lemma 26.

CASE [M]. Let T be the type of M. By IH, M[
−−→
L/y] is in redT , and then by

Lemma 27, [M][
−−→
L/y] is in red[T].

CASE for (x ← M) N. Let [T]be the type of M and [S]be the type of N. We can

assume x 6∈~y, using α-conversion as necessary.

By IH, M[
−−→
L/y] is in red[T] and

N[
−−→
L/y,P/x]= N[

−−→
L/y][P/x] ∈ red[S]

for each P ∈ redT (recall the ~L are closed). Then by Lemma 34, (for (x ←
M) N)[

−−→
L/y] is in red[S].

CASE M]N.

By IH, M[
−−→
L/y] and N[

−−→
L/y] are in red[T]; then by Lemma 32, (M]N)[

−−→
L/y]

is, too.

CASE MN : T. By IH, we have M[
−−→
L/y] ∈ redS→T and N[

−−→
L/y] ∈ redS; together

these directly imply (MN)[
−−→
L/y] ∈ redT .

CASE λx.N : S → T.

By IH, we have that all closing substitutions on N give a reducible term,

so in particular N[
−−→
L/y][P/x] ∈ redT for any P ∈ redS. Then by Lemma 28 we

get that λx.N[
−−→
L/y]= (λx.N)[

−−→
L/y] ∈ redS→T ,

CASE M.l. By IH, M ∈ red(
−−→
l:T), which implies directly that well-formed M.l ∈

redTl .

CASE (
−−−−→
l = M). By IH and Lemma 29.

175

CASE if B then M else N.

By IH, M[
−−→
L/y] and N[

−−→
L/y] are in redT , B[

−−→
L/y] ∈ redB; then by Lemma 42,

(if B then M else N)[
−−→
L/y] ∈ redT .

CASE empty(M). By IH, M ∈ redT and so by Lemma 43 we get empty(M) ∈ redbool.

CASE query M. Taking cases on the reducts, which are either just M[
−−→
L/y] or

produced by making reductions within M[
−−→
L/y], their strong normalization

follows directly by the inductive hypothesis.

Lemma 44 (Unsubstitution). If M[
−−→
L/y] strongly normalizes then M does.

Proof. By induction on M; most cases are simple applications of the induction

hypothesis. For the base case of a variable, x, the variable strongly normalizes

regardless of the substitution, so we’re done.

Proposition 4. Any well-typed term strongly normalizes.

Proof. Given M which may have free variables ~x, there is some well-typed sub-

stitution [~L/~x] which produces a closed term M[~L/~x], and by the reducibility

of closed terms this is reducible. Reducible terms are strongly normalizing, so

M[~L/~x] strongly normalizes. Then the Unsubstitution Lemma shows that M it-

self strongly normalizes.

Normal forms

Proposition 5. Closed, well-typed terms of effect-free relation type have normal

forms that satisfy this grammar:

(normal forms) V ,U ,W ::= V]U | []| F

(comprehension NFs) F ::= for (x ← table s : T) F | Z

(comprehension bodies) Z ::= if B then Z else[]| [R]| table s : T

(row forms) R ::= (
−−−→
l = B) | x

(basic expressions) B ::= if B thenB′ elseB′′ | empty(V) |
⊕(~B) | x.l | x | c

176

To prove the special case of closed, effect-free relation-type terms, we first

characterize all the normal forms.

Lemma 45 (Normal forms). Every well-typed -normal form falls in this gram-

mar:

(normal forms) V ,U ,W ::= V]U | []| F | R

(comprehension NFs) F ::= for (x ← L) F | Z

(table-like forms) L ::= table s : T | B
(comprehension bodies) Z ::= if I then Z else[]| [V]| L

(nonbag expressions) R ::= (
−−−→
l =V) | I

(nonbag, nonrecord expr’ns) I ::= if I then I ′ else I ′′ |λx.V | B
(basic forms) B ::= BV | B.l | x | c | ⊕(~V) |

empty(V)

Proof. The proof shows, by induction on the structure of terms, that each term is

either ill-typed, non-normal, or matches the above grammar.

Observe that the nonterminal V encompasses all the others in this grammar.

As a result we can take the IH as asserting that subterms match the grammar V .

CASE M]N, [], [M], table s : T, (
−−−−→
l = M), λx.N, x, c. These meet the grammar,

applying the inductive hypothesis where subterms are concerned.

CASE for (x ← L) M. Take cases on L which by IH meets the grammar V :

CASE V]U , [], [V], for (x ← L) F and if B then Z else[]. Active for the context.

CASE if I then I ′ else I ′′ with I ′′ 6= []. This term is either bag-typed, and rewrites

by IF-SPLIT, or else is not bag-typed and cannot be well-typed in this

context.

CASE table s : T, BV , B.l. x, c. These meet the grammar.

CASE λx.N, (
−−−−→
l = M). Ill-typed in this context.

Take cases on M, which by IH meets the grammar V :

CASE V]U , []. Active for the context.

177

CASE terms matching F. These meet the grammar.

CASE (
−−−−→
l = M), λx.N. Ill-typed in this context.

CASE if I then I ′ else I ′′ with I ′′ 6= []. If this term is bag-typed, it rewrites by

IF-SPLIT; otherwise it is ill-typed in this context.

CASE if M′ then M else N.

The condition M′ must be of type bool, and so must be a constant, a decon-

struction, or a variable, hence it matches I.

Now take cases on whether the type of if M′ then M else N is a bag type, a

record type, or some other.

If it has bag type and N is not [] then the term rewrites. So consider the

case that N is []. Take cases on M, which by IH must match the grammar

V :

CASE V]U , [], for (x ← L) F. Active for the context.

CASE terms matching Z. Meets the grammar.

CASE terms matching P. Ill-typed in this context

If it has record type, it rewrites.

If it does not have bag or record type, take cases on M and N, which must

match the grammar V ; we enumerate one set of cases since M and N are

treated symmetrically:

CASE V]U , [], (
−−−→
l =V), F. Ill-typed in this context.

CASE I. Meets the grammar.

CASE LM. Take cases on L, which must meet the grammar V :

CASE V]U , [], F. Ill-typed in this context.

CASE (
−−−→
l =V). Ill-typed in this context.

CASE if I then I ′ else I ′′, λx.N. Active for the context.

CASE B. Meets the grammar.

178

CASE ⊕(~V). Meets the grammar.

CASE empty(V). Meets the grammar.

CASE query(V). Rewrites to V , hence non-normal.

CASE V .l. The only normal form of record type is the record construction V =
(
−−−→
l =V); but then V .l forms a redex and is not in normal form, a contradic-

tion.

Next we tighten the grammar for the normal forms of relation-type terms.

First we need a lemma showing that basic forms B essentially inherit their

type from the environment—this is because basic forms consist only of a series

of destructors applied to a variable.

Definition. A type S is a subformula of a type T, written SgT, iff S appears

within T; the relation is the least one satisfying these laws:

SgS

SgT =⇒ SgT ′ e→ T

SgT =⇒ SgT e→ T ′

SgT =⇒ Sg (l : T,
−−→
l : T)

SgT =⇒ Sg[T]

Lemma 46. For any effect-free basic form B with typing Γ` B : T ! ∅ the type T

is either a base type or a subformula of the type of one of the variables in Γ.

Proof. By induction on the structure of B. Each syntactic form of B either has

base type, or is a deconstructor of a B form, or is a variable. By cases:

CASE BV . Here B must have type S → T. By the IH, B has hereditary typing

wrt Γ.

CASE B.l. Here B must have type (
−−→
l : S) with (l : T) ∈ (

−−→
l : T), and by IH B has

hereditary typing wrt Γ.

CASE x. Here x : T is in Γ.

179

CASE c. Constants have base type.

CASE ⊕(~V). By prescription, since this is effect-free it has base type.

CASE empty(V). Has base type.

Now in an environment that assigns a row type to each variable, we can more

tightly characterize the possible forms, as follows.

Lemma 47. Given any relation-type normal form V with typing Γ`V : T where

Γ assigns row type to each x in dom(Γ), we have that all free and bound variables

appearing in V have row type, and for any subterm for (x ← L) Z we have that L

is of the form table s : [(
−−→
l : o)].

Proof. By induction on the structure of V :

CASE for (y← L) Z.

Any free variables appearing in L come from the environment Γ and thus

have row type. Thus L cannot itself be a variable. By an inductive argu-

ment, it cannot have either of the forms BV or B.l since this would require

variables with function type or whose type is a record with a bag field. Fi-

nally L cannot be a constant since constants are assumed to have base type.

Thus L can only have the form tables : [(
−−→
l : o)]. By the inductive hypothesis,

extending Γ with a binding y : (
−−→
l : o), we get the result for subterms in Z.

CASE if I then Z else[], [V], table s : T, BV and B.l. Here the inductive hypothe-

sis directly gives our proposition.

CASE x. By hypothesis, x has row type.

Lemma 48. If Γ gives a row type to each variable and B is normal and effect-free

with typing Γ` B : T ! ∅ then B is not an application form B′V .

Proof. If B had the form B′V then B′ would have a type S → T and this S → T

would have to be a subformula of one of the types in Γ (by Lemma 46), yet these

are all row types, a contradiction.

180

Lemma 49. If Γ gives a row type to each variable and B is normal and effect-free

with typing Γ` B : T ! ∅ with T a base type then B cannot have the form B′V or

x.

Proof. Suppose B has the form B′V ; then B′ has type of the form S → T and

S → T is a subformula of one of the types in Γ (by Lemma 46), yet these are all

row-type, a contradiction. Suppose B is a variable, x. Then its type appears in Γ;

yet x has base type and all the variables in Γ have row type, a contradiction.

Lemma 50. If Γ gives a row type to each variable and B is normal and effect-free

with typing Γ ` B : T ! ∅ with T a row type then B cannot have the form B′V ,

B′.l, c, empty(V) or ⊕(~V).

Proof. The forms c, empty(V) and ⊕(~V) all have base type and so would be ill-

typed. If B has the form B′V , the term B′ has type of the form S → T, and this is

a subformula of one of the types in Γ (by Lemma 46), yet these are all row-type, a

contradiction. If B has the form B′.l then the field l of B′ must have a row type,

making B′ something strictly larger than a row type; and as such it cannot be a

subformula of one of the types in Γ, a contradiction.

Lemma 51. If Γ gives a row type to each variable and Z is normal with typing

Γ` Z : T with T a relation type, then Z cannot have any of the forms ranged by

B, and if it has the form [V] then V = (
−−−→
l = I) and each field member I has one of

the forms if B thenB′ elseB′′, empty(V), ⊕(~B), x.l, x or c.

Proof. Suppose Z falls in the set ranged by B. Then its type must be a subfor-

mula of one of the types in Γ (by Lemma 46). But since Z has relation type and

none of the elements of Γ can have such a subformula, this is a contradiction.

Now suppose Z is a singleton list [V]. Because it is relation-typed, V must

be row-typed. Thus it cannot have any of the forms V]U , []or F (recalling that

it cannot have any form ranged by B). This leaves the forms ranged by R. At

row type, it cannot have a conditional form since this is not normal. It cannot

be an abstraction because this would be ill-typed. Thus it can only be a record

construction (
−−−→
l =V) with each Vl having base type. The only normal forms which

181

have base type are those ranged by B and the form if I then I ′ else I ′′. Within the

forms ranged by B, Lemma 48 shows that it cannot have the form B′V . And it

cannot be a variable x because this would give it relation type in the context Γ.

If it has the form B′.l, then B′ can only be a variable (other possibilities being

ill-typed due to the hereditary typing or given conditions). Remaining are the

forms if B thenB′ elseB′′, empty(V), ⊕(~B), x.l, x and c as we wanted to show.

Lemma 52. Wherever empty(V) appears in a normal-form term, V has relation

type.

Proof. The rule EMPTY-FLATTEN ensures this.

Observation. Each type/effect inference rule other than that for functional ab-

stractions λx.N is monotonic in its effects. That is, if the conclusion is Γ` M : T !

e then each precondition Γ′ ` M′ : T ′ ! e′ has e ⊇ e′.

Corollary. If a term has no functional abstractions, then its entire derivation

is monotonic in the effects. That is, for any derivation of Γ ` M : T ! e, any sub-

derivation Γ′ ` M′ : T ′ ! e′ has e ⊇ e′.

Lemma 53. In an effect-free normal form of relation type, any operation appli-

cation ⊕(~V) has all its arguments of base type, thus each argument meets the

grammar for B.

Proof. Because the term is pure and contains no abstractions, every subterm is

pure. By the side condition that every primitive either has arguments all of base

type or has an effect, we can infer that primitives in such a term have arguments

all of base type, and thus meet the normal-form grammar for B.

At last we can prove the full characterization of the normal forms of query-

bracketed terms.

Proof of Prop. 5. Striking from the grammar of Lemma 45 the forms disallowed

by Lemmas 47, 48, 49, 50, 51, 52, and 53 we are left with a grammar for the

182

normal forms of closed relation-type expressions:

(normal forms) V ,U ,W ::= V]U | []| F

(comprehension NFs) F ::= for (x ← table s : T) F | Z

(comprehension bodies) Z ::= if B then Z else[]| [R]| table s : T

(record expressions) R ::= (
−−−→
l = B) | x

(basic expressions) B ::= if B thenB′ elseB′′ | empty(V) |
⊕(~B) | x.l | c

Which is what we wanted to show.

5.5 Adding Recursion

A general-purpose programming language without recursion would be severely

hobbled; but in standard SQL, recursive queries are not expressible. Thus we

need to add recursion to our language but ban it from query expressions.

We add recursion by introducing a recursive λ-abstraction, spelled recfun. It

introduces a recursive function of one argument and forces the resulting function

type to have a noqy effect.

Γ, f : S
e∪{noqy}−→ T, x : S ` M : T ! e

Γ` recfun f x = M : S
e∪{noqy}−→ T ! ∅

(T-RECFUN)

Alternatively, we could introduce a fixpoint operator:

Γ` M : (S e→ T) ∅→ (S e→ T) ! ∅

Γ` fixM : S
e∪{noqy}−→ T ! ∅

(T-FIX)

This prohibition is conservative—it forbids even primitive-recursive programs,

for example, which might sometimes be translatable to SQL—but reasonable,

since programmers are not in the habit of writing queries that require that much

power.

183

5.6 Adding the length operator

The examples in Section 5.1 used a function length which we have not yet stud-

ied. This section shows how to extend the system to support it. In the source, it

is much like empty, but SQL’s nonuniformity forces us to handle it specially.

First we extend the source language with length:

M ::= ·· · | length(M)

The typing rule is as you would expect, resulting in type int.

Extend the SQL-like sublanguage (the normal forms) as follows:

B ::= ·· · | length(F)

Note that we will normalize the argument to a comprehension normal form, F,

so that it gives a select query and not, say, a union all query. Next, augment the

SQL target:

e ::= ·· · | select count(∗) from
−−−−→t as x where e

And hence we can translate it to SQL as follows:

�length(F)� = select count(∗) from
−−−−→t as x where e

where select −→s from
−−−−→t as x where e = �F�

Now we add the following rewrite rules:

length(M) : T length(for (x ← M)[()]) (LENGTH-FLATTEN)

if M is not relation-typed

length([]) : T 0 (LENGTH-ZERO)

length(M]N) : T length(M)+ length(N) (LENGTH-UNION)

Thus requires, of course, that we have the constant 0 and the integer-addition

operation (+) in our set of constants and primitives.

Other SQL aggregate functions (avg, max, min, and so on)—all of which take

a bag to a scalar—can be handled in a similar fashion.

184

5.7 Language-integrated query systems

The query system Kleisli [Wong, 2000] is structured as a general-purpose pro-

gramming language, which compiles (sometimes partially) into SQL. Those parts

of a Kleisli program that the compiler cannot translate are executed directly by

the interpreter; there is no a priori way to determine what programs, or parts

thereof, would compile to SQL.

The LINQ project [Microsoft Corporation, 2005] is a set of extensions to the

.NET framework which allow expressing database queries (targeting SQL, XML

and other data models) in two ways: through an object interface or through SQL-

like syntactic sugar. The object interface provides methods for query operations,

such as mapping, filtering, and so on. Many of these methods accept code, in

the form of “expression trees.” For instance, the Where method, for filtering,

takes as argument a predicate with which to filter. Up to a point, this facility

permits arbitrary code from the host language to be added to queries. But not

all code is successfully translated. For example, it is possible to use a predicate

as a query condition; but it is not possible to compose these predicates. This is

because functions for use in queries have a distinct type, Expr<Function<A,B�,

rather than the function type Function<A,B>, and the former does not afford

composition in a way that the query translator will recognize. So, for example if

pred is a predicate of type Expr<Function<B,Bool>> and f is a function of type

Expr<Function<A,B>>, and one wishes to filter a bag of rows to those rows x

such that pred(f (x)) is true, it is necessary to declare a new function pred2 which

implements the composition.

It bears noting that LINQ, like Kleisli, allows the expression of queries that

can’t be expressed in SQL, but whose results can be constructed from an SQL

query. For example, a LINQ query can give its result rows in the form of an

object type, which has no direct analogue in SQL; in this case the query generator

may still perform the bulk of the query in SQL and simply repackage the results

during a post-processing phase. Such a splitting is not afforded by the system of

this chapter, because this system is based in a hard assertion of what code must

185

translate to SQL. It may be desirable to find a flexible middle ground which

would allow expressions to be split, as in LINQ and Kleisli, and still offers some

static guarantees of queryization, as in this chapter.

The Links language [Cooper et al., 2006] also offers language-integrated query.

As in Kleisli, the queries are expressed using the language’s own native iteration

constructs and conditionals. Kleisli and LINQ accomodate abstracted functions

to a point: Kleisli allows them in positions where they are immediately applied,

and LINQ allows them (unapplied) in particular roles, for example, as filtering

conditions or mapping functions. More sophisticated combinations of abstraction

and application (for example, currying and partial application) are not permit-

ted. Links implements the higher-order normalization described in this chapter.

The Links implementation, by Sam Lindley, also allows polymorphic types, using

a kinding discipline to force polymorphic query expressions to have appropriate

types.

The Ferry system [Grust et al., 2009] is a first-order functional programming

language that translates a query, which may have a nested result type, into one

or more flat SQL queries. Nested types will require a number of queries depend-

ing on the depth of nesting; the runtime system reassembles the multiple query

results into the nested result value. As a functional programming language, it is

restricted (to first-order functions and pure, non-recursive computations), allow-

ing it to be totally translatable to SQL without further analysis.

Comprehensions Comprehensions as a syntax for database queries have a

long history, going back at least to Trinder and Wadler [1989] and surveyed by

Grust [2003]. Kleisli [Davidson et al., 1997], with its query language CPL, is an

early commercial system using comprehensions as a query notation.

Other database systems that apply comprehensions for querying include the

QLC query language of Erlang’s Mnesia [Mattsson et al., 1998]. QLC (for Query

List Comprehensions), rather than compiling to SQL, runs directly against an

Mnesia database, using certain of its own optimizations. For example, a compre-

hension that draws from two Mnesia tables using a condition to relate them may

186

be executed using joining algorithms, taking advantage of indexes. The LINQ

special syntax can also be seen as a kind of comprehension.

5.8 History

The “first-normal-form” restriction in database theory—the restriction that every

relation should be flat, containing only base types—dates back to E. F. Codd’s

original definition of the relational model. Schek and Scholl [1986] were the first

to examine a non-flat relational model, defining a Nested Relational Calculus.

Paredaens and van Gucht [1988, 1992] gave the first unnesting result, show-

ing that nested relational algebra, when restricted to flat input and output rela-

tions, is equivalent in power to traditional flat relational algebra. Wong [1996]

soon extended this result, showing his “conservativity” result, that any first-

order nested relational algebra expression can be rewritten so that it produces

no intermediate data structures deeper than the greatest of its input and output

relations. Fegaras [1998] also shows how to transform higher-order nested rela-

tional queries into flat ones using a rewrite system with similarities to ours; we

extend this by offering a proof of normalization, taking the queries all the way

to SQL, and showing how a type-and-effect system can separate the translatable

and untranslatable fragments of a general-purpose language. van den Bussche

[2001] extended Wong’s first-order result to show that even nested-result-type

expressions can be simulated with the flat relational algebra, if we allow for an

interpretation function which assembles the flat results back into a nested rela-

tion. The Ferry system [Grust et al., 2009] expands on Van den Bussche’s result

and translates the queries all the way to SQL.

Hillebrand et al. [1993] prove an inverse result to the present one, that simply-

typed λ-calculus itself subsumes other query languages (flat relational calculus,

Datalog¬, and others), and in particular that PTIME queries become λ-terms

evaluable in PTIME.

Wiedermann and Cook [2007] and Wiedermann et al. [2008] present a tech-

nique using abstract interpretation for extracting structured queries from im-

187

perative object-oriented programs using an ORM. Here object-oriented dispatch

takes the place of higher-order functions. Again the extraction is partial.

The effort to harmonize query languages with programming languages is

nearly as old as the two fields themselves. Atkinson and Buneman [1987] sur-

vey the early history of integration. The impedance mismatch problem between

databases and programming languages is described by Copeland and Maier [1984].

The use of comprehension syntax was a breakthrough for language integra-

tion, since it gave an iteration construct that was both powerful enough for

much general-purpose programming and also explicit enough to admit a more

direct translation to a query language; this connection is explored by many au-

thors [Trinder and Wadler, 1989, Trinder, 1992, Breazu-Tannen et al., 1992,

Buneman et al., 1994, Grust and Scholl, 1999]. Grust [2003] summarizes much

preceding work on monad comprehensions as a query language.

188

Chapter 6

Future Work

The essential Links project of creating an experimental language to ease web

programming has more or less been achieved. The group developed a new lan-

guage with an execution model that encompasses the complete span of a web

application, from the browser environment through the server environment to a

backend relational database.

Much more can be done to make Links more usable, as well as to further the

goal of making web programming easier.

Links improvements

As mentioned in the body of the thesis, the location annotations on functions

should be completed in several ways: they should be allowed on non-top-level

functions, there should be a form that allows annotating arbitrary terms. The

calculus should be extended to allow sets of locations as annotations.

Formlets are adequate for composition of static forms, but they don’t offer

any way to create dynamic, interactive controls that react immediately to user

activity. Could the syntactic and semantic approach of formlets be extended to

define reactivity for such controls?

The SQL compilation chapter showed how to detect expressions that can be

compiled to a single SQL query; but Grust et al. showed how to translate each

189

expression in a pure language into a fixed set of SQL queries, even when no single

query is equivalent, as when the result has a nested collection type. It should be

possible to accomodate such expressions in the framework of Chapter 5.

Furthermore, there are several features of SQL which we might wish to

target in such a translation—particularly the group by and order by clauses.

Peyton Jones and Wadler [2007] have developed a notation and semantics, inte-

grated with that of comprehensions, for expressing these transformations, and

Grust et al. [2009] have shown how to perform the translation for the order by

clause.

The serialization of closures in Links is vulnerable to changes in the source

code; yet, in the face of code changes, we should expect active web applications

to keep working or to gracefully inform the user that certain existing links will

no longer work. Conventional web systems can often handle old links after code

updates, since their URLs are controlled manually anyway. Ideally, the program-

mer should be able to control the behavior of outdated links; some might have

a sensible substitute in the new version, while others will become dead ends

and require an apology. How best for the programmer to define these behav-

iors? Might outdated links cause an exception to be thrown in some global scope,

which the programmer could choose to handle as she liked? Might the scope in

fact be more targeted to permit even a convenient separation of error handling

between application segments?

This last point leads to a larger set of concerns: How to make the language

support truly web-savvy application development. Web application developers

are typically very concerned about the ways their applications interact with the

URL space of the web and their application’s participation in the web resource

concept.

Web developers often want to fine-tune the structure of their URLs; they may

even see that structure as part of the public interface of their application. The

ability for clients to form URLs might be an important part of a web API, that is,

an HTTP interface that other software can use to fetch and manipulate informa-

tion programmatically. A web API might be defined to take several parameters

190

at various points in the URL, which clients can vary at will. This is ill-supported

by the present design of Links, because all of Links’ internal URLs are presently

opaque. Certain web frameworks, notably Catalyst for Perl [Riedel et al.] and Oc-

sigen for OCaml [Balat, 2006], allow associating various kinds of URL patterns

with functions, and the framework takes care of dispatching incoming requests

to these. In Links, we would need a bi-directional mapping from code-points to

URLs and back again, so that we could both construct URLs and dispatch upon

them.

Extending the formalisms

Each of the formalisms of the thesis could be extended, perhaps providing guid-

ance for a broader set of languages or applications.

The RPC calculus could be extended to show how exceptions could be handled

by the same trampolining approach. Also, we saw a particular network topology,

with client and server, but it would be interesting to see how location-aware

languages could be implemented on another topologies, perhaps with many ma-

chines arranged in a client-server sequence or with arbitrary connections among

them.

In showing how a stateful system can be implemented with a stateless server,

this work examined only a limited form of state. Mutable data would be a com-

pelling form of state to study. Different approaches to such data are possible:

reference could point into a global store, shared between client and server (with

a provision to expunge it from the server at the low level, of course), or client and

server could have different stores with separate references

The concurrency and message-passing facilities in Links could also be mod-

eled within the calculus with more work.

The RPC calculus, like Links, made it easy to move between client and server.

But programmers might like a way of controlling this movement—for example,

barring moves during performance-critical sections. Such control could perhaps

be achieved using an effect system and annotations like in the SQL compilation

191

analysis.

Previous studies of comprehensions for querying have generalized from the

use of bags as the collection type to any monad with appropriate monoid op-

erations [Watt and Trinder, Fegaras, 1998, Grust, 2003], sometimes called a

ringad [Watt and Trinder]. Some of the rewrite rules in Chapter 5 are unsound

for these structures in general, since the rewrites require something like com-

mutativity of the (]) operation. Kleisli offers three collection types (sets, bags,

and lists); could we extend the totality result of this chapter to such a suite of

types?

Design mistakes

Experience has suggested that, in the author’s view, some choices made in the

design of Links were mistakes. Emulating the surface syntax of a language with

quite different semantics (namely JavaScript) was intended to lure programmers

from ‘the other side’; instead it served mainly to confuse people (where semantics

differed) and lead to some painful compromises. Multi-argument functions are

a cumbersome duplication of features already available and fit awkwardly with

higher-order functions (which now must be sensitive to the arity of the argument

function). Using the semicolon to force a unit-typed expression is a trick too

subtle for normal use, and leads to lots of spurious type errors—and it has not

proved itself by catching dangerous errors. Embedding XML in the language can

be useful, particularly for short examples, but in software engineering one wants

to put the user interface definition as far from the core logic as possible.

Comprehensions in Links have a body of list type and the evaluated bodies

are concatenated; this is similar to the XQuery notion of comprehension but dif-

fers from that of Haskell, Python and JavaScript. The advantage of its approach

is that further generators and guards can be expressed by nesting the existing

comprehension (for) and conditional (if) constructs. But rarely, if ever, do we

make use of the ability to put a non-singleton literal list in a comprehension body,

and so the perpetual need for a singleton constructor becomes a potential source

192

of errors. Also, using nested comprehensions instead of the multiple-generator

ones interacts poorly with the order by and group by clauses proposed by Pey-

ton Jones and Wadler [2007]: since these clauses must be inside the scope of one

or more generators but affect the result returned by all of them together, we need

some way to indicate which series of generators are to be affected. The tradi-

tional comprehension notation, which allows multiple generators, is a natural

delimiter for order by and group by.

Using Erlang’s process-specific mailboxes in our statically-typed setting re-

quired some way of breaking out of the process’ fixed mailbox type. This could

have been done with first-class (rather than process-specific) message queues;

instead we did it with the spawnWait keyword, effectively allowing a process

to create a new mailbox, handle some messages on it, and then continue—a

dynamically-scoped mailbox.

Epi{gr,t}aph for Links:

Look closely at the most embarrassing details and amplify them.

(Oblique Strategy #116, Brian Eno and Peter Schmidt.)

193

Chapter 7

Conclusion

Links was a research experiment in creating a new language for the web, unify-

ing the messy components that programmers commonly have to stitch together.

The challenge proved to be a difficult one. Across the tiers, there are many in-

dependent points where better programming abstractions could be desired. Try-

ing to invent all of these and keep them integrated in the context of a brand-new

language was an ambitious challenge—perhaps too ambitious.

Trying to integrate all aspects of a big area has the disadvantage that there is

no partial success. Can any single language hope to keep up with all the external

systems that are needed in an area? Can it hope to give unleaky abstractions

that seal away the details of all of these?

The world outside our integrated garden is changing, and we can’t keep up

with it. It would be better to make bridges, to make advancements that interact

well with the outside world.

Still, web programming is an exciting domain for which to invent abstrac-

tions, because its execution model poses unfamiliar challenges for programmers.

Unlike batch and GUI event-loop programs, web programs are re-entrant: if we

conceive of the whole application as one program, then control flow takes novel

forms in the presence of the back button. Surely, many web programmers do

not even perceive a new execution model—they see themselves as writing batch

programs that spit out web pages and talk to databases—so it is a step forward

194

if we have defined a sensible concept of what web programs are, in their natural

habitat. And, optimistically, the facilities offered here for query integration and

location-awareness might contribute to other spheres than web programming.

I’m most proud of the ways this thesis, and the Links research group, accom-

plished what Jeremy Yallop asked for in my introduction: internalizing “design

patterns” within the language. Most of the useful features presented here are

based on a handful of powerful pre-existing ideas: CPS translation, defunction-

alization, trampolining, rewrite systems, and idioms, for example. Web program-

ming is, admittedly, a simple task compared to what many people do with pro-

grams; but we were able to use these elegant artifacts of computer science to

provide just the right abstractions for some web programming tasks.

Underneath all this, the Links work has borne out the idea that good ideas

are best expressed in clear, concise formalisms. The definition of formlets, the

compilation scheme for the RPC calculus, and the rewriting system for query

translation are each expressible on one sheet of paper in 12-point type with

whitespace to spare. This makes them much more attractive for re-implementing

in other languages. The formalisms guided us to designs of low complexity and

helped us communicate our ideas efficiently.

Here’s hoping the future will produce more graceful formalisms that make

computer programming easier and more powerful, decade after decade.

195

Bibliography

J. Armstrong, M. Williams, and R. Virding. Concurrent Programming in Erlang.

Prentice-Hall, 1993.

D. L. Atkins, T. Ball, G. Bruns, and K. C. Cox. Mawl: A domain-specific language

for form-based services. IEEE Trans. Softw. Eng., 25(3):334–346, 1999.

Malcolm P. Atkinson and O. Peter Buneman. Types and persistence in database

programming languages. ACM Comput. Surv., 19(2):105–170, 1987. ISSN

0360-0300. doi: http://doi.acm.org/10.1145/62070.45066.

Vincent Balat. Ocsigen: typing web interaction with Objective Caml. In ML ’06,

September 2006.

I.G. Baltopoulos and A.D. Gordon. Secure compilation of a multi-tier web lan-

guage. In Proceedings of the 4th international workshop on Types in language

design and implementation, pages 27–38. ACM New York, NY, USA, 2009.

Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and correctness of

program transformations based on control-flow analysis. In TACS ’01, volume

2215 of Lecture Notes in Computer Science, pages 420–447. Springer, 2001.

Jeffrey M. Bell and James Hook. Defunctionalization of typed programs. Tech-

nical report, Oregon Graduate Institute, 1994.

Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defunction-

alization. SIGPLAN Not., 32(8):25–37, 1997.

196

Tim Berners-Lee. Web architecture from 50,000 feet. Available at

http://www.w3.org/DesignIssues/Architecture.html., September 1998.

URL http://www.w3.org/DesignIssues/Architecture.html.

C. Brabrand, A. Moller, A. Sandholm, and M. I. Schwartzbach. A runtime system

for interactive Web services. Computer Networks-the International Journal of

Computer and Telecommunications Networkin, 31(11):1391–1402, 1999.

C. Brabrand, A. Møller, M. Ricky, and M. I. Schwartzbach. PowerForms: Declar-

ative client-side form field validation. World Wide Web, 3(4):205–214, 2000.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The <bigwig>
project. ACM Trans. Internet Techn., 2(2):79–114, 2002.

Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded

query languages. In ICDT ’92. Springer, 1992.

P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with

complex objects and collection types. 149(1):3–48, 1995.

Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong.

Comprehension syntax. SIGMOD Record, 23:87–96, 1994.

Adam Chlipala. The ur programming language family, 2008. URL http://www.

impredicative.com/ur/. Fetched Mar 2009.

Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extend-

ing Java for high-level web service construction. ACM Trans. Program. Lang.

Syst., 25(6):814–875, 2003.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-

gramming without tiers. In FMCO ’06, 2006.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The essence of form

abstraction. In APLAS ’08, 2008.

197

George Copeland and David Maier. Making smalltalk a database system. SIG-

MOD Rec., 14(2):316–325, 1984. ISSN 0163-5808. doi: http://doi.acm.org/10.

1145/971697.602300.

Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS

transformation. Mathematical Structures in Computer Science, 2(4):361–391,

1992.

Olivier Danvy and Kevin Millikin. Refunctionalization at work. Technical Report

RS-08-4, BRICS, June 2008.

Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In PPDP ’01,

pages 162–174. ACM, 2001.

SB Davidson, C. Overton, V. Tannen, and L. Wong. BioKleisli: a digital library

for biomedical researchers. International Journal on Digital Libraries, 1(1):

36–53, 1997.

Chris Eidhof. Haskell Formlets module, 2008. URL http://hackage.haskell.

org/cgi-bin/hackage-scripts/package/formlets.

Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP ’97, pages

263–273, New York, NY, USA, 1997. ACM Press.

Leonidas Fegaras. Query unnesting in object-oriented databases. In SIG-

MOD ’98, pages 49–60, New York, NY, USA, 1998. ACM.

Michael J. Fischer. Lambda calculus schemata. SIGACT News, (14):104–109,

1972.

Alain Frisch. OCaml + XDuce. In ICFP ’06, pages 192–200, 2006.

Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In

ICFP ’99. ACM Press, September 1999.

David K. Gifford and John M. Lucassen. Integrating functional and imperative

programming. In LFP ’86, pages 28–38, New York, NY, USA, 1986. ACM.

198

Google Inc. Google Suggest (application), December 2004. URL http://labs.

google.com/suggest. Now incorporated into the google.com home page.

Paul Graham. Beating the averages, 2001a. URL http://www.paulgraham.com/

avg.html.

Paul Graham. Method for client-server communications through a minimal in-

terface. United States Patent no. 6,205,469, March 20 2001b. (filed May 27,

1997).

Paul Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias

Felleisen. Automatically restructuring programs for the web. In ASE ’01,

pages 211–222, Washington, DC, USA, 2001a. IEEE Computer Society.

Paul Graunke, Robert Findler, Shriram Krishnamurthi, and Matthias Felleisen.

Modeling web interactions and errors. In ESOP ’03, Warsaw, Poland, Apr 2003.

Springer-Verlag.

Paul T. Graunke, Shriram Krishnamurthi, Steve Van Der Hoeven, and Matthias

Felleisen. Programming the web with high-level programming languages. In

ESOP ’01, pages 122–136, London, UK, 2001b. Springer-Verlag.

Paul T. Graunke, Shriram Krishnamurthi, Steve Van Der Hoeven, and Matthias

Felleisen. Programming the web with high-level programming languages. In

ESOP ’01, pages 122–136, 2001c.

T. R. G. Green. Cognitive dimensions of notations. In Proc. of the fifth confer-

ence of the British Computer Society, Human-Computer Interaction Specialist

Group on People and computers V, pages 443–460, New York, NY, USA, 1989.

Cambridge University Press.

T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. A Ferry across the great

database and programming languages divide. Submitted for publication.

Torsten Grust. The Functional Approach to Data Management, chapter Monad

comprehensions, a versatile representation for queries. Springer Verlag, 2003.

199

Torsten Grust and Marc H. Scholl. How to comprehend queries functionally. J.

Intell. Inf. Syst., 12(2-3):191–218, 1999.

Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. Ferry: Database-

supported program execution. In SIGMOD ’09, June 2009.

Michael Hanus. Type-oriented construction of web user interfaces. In PPDP ’06,

pages 27–38, 2006.

Michael Hanus. Putting declarative programming into the web: Translating

Curry to JavaScript. In PPDP ’07, pages 155–166, 2007.

Gerd G Hillebrand, Paris C Kanellakis, and Harry G Mairson. Database query

languages embedded in the typed lambda calculus. In LICS ’93, 1993.

Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML process-

ing language. ACM Trans. Internet Techn., 3(2):117–148, 2003.

Thomas Johnsson. Lambda lifting: transforming programs to recursive equa-

tions. In Proc. of a conference on Functional programming languages and com-

puter architecture, pages 190–203, New York, NY, USA, 1985. Springer-Verlag

New York, Inc.

Michael Jouravlev. Redirect after post, August 2004. URL http://www.

theserverside.com/tt/articles/article.tss?l=RedirectAfterPos%t.

Sam Lindley and Ian Stark. Reducibility and >>-lifting for computation types.

In TLCA ’05, pages 262–277, 2005.

Sam Lindley, Philip Wadler, and Jeremy Yallop. Idioms are oblivious, arrows

are meticulous, monads are promiscuous. In Venanzio Capretta and Conor

McBride, editors, MSFP ’08, Reykjavik, Iceland., 2008.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL ’88, pages

47–57, New York, NY, USA, 1988. ACM.

200

John M. Lucassen. Types and Effects: Towards the Integration of Functional and

Imperative Programming. PhD thesis, August 1987.

Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-

language programs. In POPL ’07, pages 3–10, New York, NY, USA, 2007.

ACM. ISBN 1-59593-575-4.

Jacob Matthews, Robert Bruce Findler, Paul Graunke, Shriram Krishna-

murthi, and Matthias Felleisen. Automatically restructuring programs for

the web. Automated Software Engineering, 11:337–364, 10 2004. doi: 10.

1023/B:AUSE.0000038936.09009.69. URL http://www.springerlink.com/

content/t552m86535518257.

Håkan Mattsson, Hans Nilsson, and Claes Wikström. Mnesia—a distributed

robust DBMS for telecommunications applications. In PADL ’99, pages 152–

163. Springer, 1998.

Conor McBride. Idioms, 2005. Presented at the Scottish Programming Lan-

guages Seminar, June 2005. http://www.macs.hw.ac.uk/~trinder/spls05/

McBride.html.

Conor McBride and Ross Paterson. Applicative programming with effects. Jour-

nal of Functional Programming, 18(1), 2008.

Jay McCarthy. PLT Scheme Formlets module, 2008. URL http://

docs.plt-scheme.org/web-server/formlets.html. Distributed with PLT

Scheme [PLT].

Leo Meyerovich. Flapjax: Functional reactive web programming, 2007. URL

http://www.cs.brown.edu/lmeyerov/thesis8.pdf.

Microsoft Corporation. The LINQ project: .NET language integrated query.

White paper, September 2005.

Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon

University, 2007.

201

Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric

modal lambda calculus for distributed computing. In LICS ’04, pages 286–295,

Washington, DC, USA, 2004. IEEE Computer Society.

Gavi Narra. ObjectGraph dictionary (application). Described at

http://www.objectgraph.com/dictionary/how.html, 2004.

M. Neubauer and P. Thiemann. Placement Inference for a Client-Server Calcu-

lus. In Proceedings of the 35th international colloquium on Automata, Lan-

guages and Programming, Part II, page 86. Springer, 2008.

Matthias Neubauer. Multi-Tier Programming. PhD thesis, Universität Freiburg,

2007.

Matthias Neubauer and Peter Thiemann. From sequential programs to multi-

tier applications by program transformation. In POPL ’05, pages 221–232,

New York, NY, USA, 2005. ACM Press.

Lasse R. Nielsen. A denotational investigation of defunctionalization. Technical

Report BRICS RS-00-47, DAIMI, Department of Computer Science, University

of Aarhus, December 2000.

Jan Paredaens and Dirk van Gucht. Possibilities and limitations of using flat

operators in nested algebra expressions. In PODS ’88, pages 29–38, New York,

NY, USA, 1988. ACM.

Jan Paredaens and Dirk van Gucht. Converting nested algebra expressions into

flat algebra expressions. ACM Trans. Database Syst., 17(1):65–93, 1992.

Tomáš Petříček and Don Syme. Rich client/server web applications in F], 2007.

URL http://tomasp.net/fswebtools/files/fswebtoolkit-ml.pdf.

Simon L. Peyton Jones and Philip Wadler. Comprehensive comprehensions. In

Gabriele Keller, editor, Haskell, pages 61–72. ACM, 2007. ISBN 978-1-59593-

674-5.

202

Rinus Plasmeijer and Peter Achten. iData for the World Wide Web—

programming interconnected web forms. In FLOPS ’06, volume 3945 of LNCS,

Fuji Susono, Japan, 2006. Springer Verlag.

Gordon Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoreti-

cal Computer Science, 1:125–159, 1975.

PLT. PLT Scheme. URL http://plt-scheme.org/.

François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization. In

POPL ’04, pages 89–98, New York, NY, USA, 2004. ACM.

Fraņois Pottier and Didier Rémy. Advanced Topics in Types and Programming

Languages, chapter ‘The essence of ML type inference’, pages 389–489. MIT

Press, 2005.

Christian Queinnec. Continuations to program web servers. In International

Conference on Functional Programming, 2000.

Christian Queinnec. Inverting back the inversion of control or, continuations

versus page-centric programming. SIGPLAN Not., 38(2):57–64, 2003.

Didier Rémy. Type inference for records in a natural extension of ML. In Carl A.

Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented

Programming, chapter 3, pages 67–95. MIT Press, 1993.

John C. Reynolds. Definitional interpreters for higher-order programming lan-

guages. In ACM ’72: Proceedings of the ACM annual conference, pages 717–

740, New York, NY, USA, 1972. ACM Press.

John C. Reynolds. The discoveries of continuations. LISP and Symbolic Compu-

tation, 6(3):233–247, 1993.

Sebastian Riedel, David Naughton, Marcus Ramberg, Jess Sheidlower, Dani-

jel Milicevic, Kieren Diment, and Yuval Kogman. Introduction to Cata-

203

lyst: Actions. URL http://search.cpan.org/dist/Catalyst-Manual/lib/

Catalyst/Manual/Intro.p%od#Actions.

Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans. Pro-

gram. Lang. Syst., 19(6):916–941, 1997.

H. J. Schek and M. H. Scholl. The relational model with relation-valued at-

tributes. Inf. Syst., 11(2):137–147, 1986.

Manuel Serrano, Erick Gallesio, and Florian Loitsch. HOP, a language for pro-

gramming the Web 2.0. In Proc. of the First Dynamic Languages Symposium,

Portland, Oregon, USA, Oct 2006. URL http://www-sop.inria.fr/members/

Manuel.Serrano/publi/dls06/article.html%.

Steve Strugnell. Creating linksCollab: an assessment of Links as a web de-

velopment language. Bachelor’s thesis, U of Edinburgh, 2008. Available at

http://groups.inf.ed.ac.uk/links/papers/undergrads/steve.pdf.

W. W. Tait. Intensional interpretation of functionals of finite type I. Journal of

Symbolic Logic, 32(2):198–212, 1967.

Jean-pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Infor-

mation and Computation, pages 162–173, 1992.

Peter Thiemann. WASH/CGI: Server-side web scripting with sessions and

typed, compositional forms. In PADL ’02, pages 192–208, London, UK, 2002.

Springer-Verlag.

Peter Thiemann. An embedded domain-specific language for type-safe server-

side web scripting. ACM Trans. Inter. Tech., 5(1):1–46, 2005.

Phil Trinder. Comprehensions, a query notation for DBPLs. In DBPL ’91, San

Francisco, CA, USA, 1992. ISBN 1-55860-242-9.

204

Phil Trinder and Philip L. Wadler. List comprehensions and the relational calcu-

lus. In Glasgow Workshop on Functional Programming, pages 187–202, 1989.

URL citeseer.ist.psu.edu/wadler99list.html.

Jan van den Bussche. Simulation of the nested relational algebra by the flat re-

lational algebra, with an application to the complexity of evaluating powerset

algebra expressions. Theoretical Computer Science, 254(1-2):363–377, 2001.

Peter van Roy. Convergence in language design: a case of lightning striking four

times in the same place. In FLOPS, 2006.

Philip Wadler. Monads for functional programming. In Advanced Functional

Programming ’95, volume 925 of LNCS, pages 24–52. 1995.

David A. Watt and Phil Trinder. Towards a theory of bulk types. Technical Report

Fide Technical Report 91/26, Glasgow University.

Ben Wiedermann and William R. Cook. Extracting queries by static analysis of

transparent persistence. In POPL ’07, 2007.

Ben Wiedermann, Ali Ibrahim, and William R. Cook. Interprocedural query

extraction for transparent persistence. SIGPLAN Not., 43(10):19–36, 2008.

ISSN 0362-1340.

Wikipedia. Post/redirect/get, November 2008. URL http://en.wikipedia.org/

wiki/Post/Redirect/Get.

Hugh E. Williams and David Lane. Web Database Applications with PHP &

MySQL. O’Reilly, 2nd edition, 2004.

Limsoon Wong. Kleisli, a functional query system. J. Functional Programming,

10(1):19–56, January 2000.

Limsoon Wong. Normal forms and conservative extension properties for query

languages over collection types. J. Comput. Syst. Sci., 52(3):495–505, 1996.

205

World Wide Web Consortium. DOM level 3 core, recommendation, April 2004.

URL http://www.w3.org/TR/DOM-Level-3-Core/.

World Wide Web Consortium. Architecture of the World Wide Web 1.0, December

2003a. URL http://www.w3.org/2001/tag/2003/webarch-20031128.

World Wide Web Consortium. HTML 4.01 specification, 1999. URL http://www.

w3.org/TR/html4/.

World Wide Web Consortium. Document Object Model (DOM) level 3

events specification, November 2003b. URL http://www.w3.org/TR/2003/

NOTE-DOM-Level-3-Events-20031107/.

Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in program-

ming languages: a syntactic proof technique. In ICFP ’99, pages 197–207,

New York, NY, USA, 1999. ACM Press.

206

Glossary of Web Terms

control (user interface) An item with which a user can interact, such as a

button, a tab, a scroll bar, etc.

Document Object Model (DOM) The tree-like data model used by web browsers

to represent a web page; also, the interface defined for manipulating this

data and that for receiving notification of user activity on the page.

server cluster A collection of servers all of which play the same role; for exam-

ple, they might all provide a certain web application by responding to web

requests from clients; typically (though not always), incoming requests are

distributed amongst servers in a farm to balance the load and so no client

or task is consistently assigned to any particular machine.

web resource An implicit information resource which may admit retrieval or

modification using web protocols; that which is located by a URL or Uni-

form Resource Locator.

XMLHttpRequest The standard interface for making HTTP requests from Java-

Script code in a browser.

207

Colophon

This thesis was typeset by the author with LATEX. The text and headings are set

in New Century Schoolbook, code in Computer Modern Typewriter, and math in

Fourier with Computer Modern Sans Serif. Drawings were produced in Omni-

Graffle and Inkscape.

208

