
Simply adding lambda won’t make your rewrites di-
verge
Ezra Cooper
February 28, 2010

Mitsuhiro Okada showed in 1989 that the addition of simply-typed
lambda calculus to a convergent (confluent and strongly normalizing)
term-rewriting system is still convergent.1 I had trouble understand- 1 Mitsuhiro Okada. Strong normaliz-

ability for the combined system of the
typed lambda calculus and an arbitrary
convergent term rewrite system. In
Proceedings of the ACM SIGSAM 1989
International Symposium on Symbolic and
Algebraic Computation, pages 357–363.
ACM, 1989

ing this paper because of its unfamiliar notations, so this document
tries to restate the result in terms more similar to the other papers
I’ve found in the literature. Here I prove only the result for simply-
typed λ-calculus, but Okada also shows it for System F.

With this theorem in hand, we can safely add functional abstrac-
tion (provided it keeps a simply-typed discipline) to any first-order
rewrite system and be confident that rewriting the combined calculus
still terminates.

The setting is as follows. We have two classes of terms: one called
rewrite terms which are composed only of function symbols and vari-
ables:

u, v, w ::= x | f (u1, ..., un) rewrite terms

f function symbols

And another class of lambda terms, which includes the above,
formed as follows:

L, M, N, P ::= x | LM | λx.N | f (M1, . . . Mn) lambda terms

These are typed in a simple type system consisting of base types B
and arrow types:

S, T, U ::= B | S→ T types

The typing rules are as follows:

Γx : T ` xT

Γ ` L : S→ T Γ ` M : S

Γ ` LM : T

Γ, x : S ` N : T

Γ ` λx.N : S→ T

Γ ` Mi : Bi for each i ` f : B1 × · · · Bn → Bn+1

Γ ` f (M1, . . . , Mn) : Bn+1

The rule for function symbols indicates that they always take argu-
ments of base type and form a term of base type.

simply adding lambda won’t make your rewrites diverge 2

We require the existence of at least one term of each base type—for
example, a constant.

We write M[N/x] for the capture-avoiding substitution of lambda-
term N for x in the lambda-term M; we can also substitute lambda
terms into rewrite terms to produce lambda terms (u[N/x]) and
rewrite terms into rewrite terms to produce rewrite terms (u[v/x]).
The letters σ and ρ will range over substitutions, that is, compositions
of simple substitutions like [N/x]. The composition is written σ · ρ
Terms are considered equal when they are α-equivalent.

Substitutions can be typed by typing all their terms. We will write
ρ : Γ if each [M/x] in ρ is Γ ` x : T and ` M : T. This requires the
terms M to be closed, as they are typed in an empty context.

We are given a family of rewrite rules on the rewrite terms, which
must be type-preserving:

u : B v : B

The rewrite rules are understood to define a rewrite system over the
lambda terms by compatibility with substitution: u v implies
uρ vρ.

One further reduction applies to the class of lambda terms:

(λx.N)M −→β N[M/x]

This rule and the given rewrite rules apply in any term context.

We want to show that all terms in this language are strongly nor-
malizing, a property we can hope for since the typed lambda calcu-
lus, on its own, is s.n., as is the rewrite system on its own.

The proof uses the Tait-Girard method of reducibility predicates.2 2 Jean-Yves Girard, Yves Lafont, and
Paul Taylor. Proofs and Types. Cam-
bridge University Press, New York,
1989

Define a (type-indexed) family of predicates redT on closed terms
as follows:

• M ∈ redB iff M : B strongly normalizes.

• L ∈ redS→T iff for all P ∈ redS we have LP ∈ redT

We can pronounce M ∈ redT as “M is reducible at T.”
For the purpose of inducting on reduction trees, we define the

notion of maximum reduction length, defined for terms that strongly
normalize:

maxred M =

1 + maxM′ , M M′(maxred M′) if M has reducts

0 if M is normal

We will also write maxred σ for the sum of maxred Mi where [Mi/xi] ∈
σ.

We assume bound variables in a term and those in its typing con-
text are all distinct.

simply adding lambda won’t make your rewrites diverge 3

Lemma 1. If M ∈ redS and M −→ M′ then M′ ∈ redS.

Proof. By induction on the type S.
At base type, note that a reduct of a strongly normalizing term

must also be s.n.
At arrow type, T → U, we have that for any P ∈ redT , the ap-

plication MP ∈ redU , and we need to show that for any P ∈ redT ,
the counterpart M′P ∈ redU . This is immediate from the induction
hypothesis and the fact that MP −→ M′P.

Lemma 2. For any type S,

(i) there is a reducible term of type S,

(ii) for any M ∈ redS we have that M strongly normalizes, and

(iii) if M is an application and every M′ for which M −→ M′ has M′ ∈
redS, then M ∈ redS.

Proof. By induction on the type.

• Case B.

(i) We have assumed the existence of at least one term of each
base type. Since the rewrite system itself is strongly normalizing,
some such term at each type must be strongly normalizing, hence
reducible at B.

(ii) The fact that a reducible term at B strongly normalizes is im-
mediate from the definition of reducibility.

(iii) The fact that M strong normalizes is immediate from the fact
that all reducts are strongly normalizing.

• Case S→ T.

(i) The IH (part (i)) produces a reducible term N : T. Construct
λx.N : S → T. (Since N is closed, x is a dummy variable.) Now to
show that λx.N is reducible, we show that (λx.N)M is reducible
for each M ∈ redS. We show this by induction on maxred N +

maxred M. (These values are well-defined because reducible terms
are strongly normalizing, by the IH, part (ii)). In particular, we
show that every reduct of (λx.N)M is reducible, and since it is an
application, this entails (by the IH, part (iii)) that (λx.N)M itself is
reducible. The reducts are as follows:

– (λx.N′)M with N −→ N′; here the (inner) IH applies;

– (λx.N)M′ with M −→ M′; here the (inner) IH applies;

– (λx.N)M −→β N[M/x] = N; here N was constructed to be
reducible.

simply adding lambda won’t make your rewrites diverge 4

(ii) Given M ∈ redS→T , we can construct MP ∈ redT using an
arbitrary P ∈ redS as promised by the IH (part (i)). Then by the IH
(part (ii)), MP strongly normalizes. And as a subterm thereof, M
also strongly normalizes.

(iii) We need to show that for any P ∈ redS, the application
MP ∈ redT . We show this by induction on maxred P, which is
well-defined because P strongly normalizes according to the IH
(part (ii)). Since M is an application, it does not react directly
with P; any reductions are within M or within P. Now we see that
all reducts of MP are in redT : a reduct MP −→ M′P ∈ redT by
assumption, while a reduct MP −→ MP′ reduces the (inner) in-
duction metric and hence the (inner) induction hypothesis gives
us MP′ ∈ redT . And so, since all reducts of MP are in redT , the
outer induction hypothesis applies to give MP ∈ redT and hence
M ∈ redS→T .

Lemma 3. Any base-type term M can be decomposed as M = uρ where u
is a rewrite term, ρ = [M1/x1, . . . , Mn/xn], each Mi has a non-function
symbol at its root, and each Mi has base type.

Proof. By induction on the structure of M.
For the base case, If M does not have a function symbol at its root,

then let u = x, where x is a fresh variable, and ρ = [M/x].
For the inductive case where M has a function symbol at its

root, as M = f (N1, . . . , Nn), we know that each of the arguments
N1, . . . , Nn has base type and so we can apply the inductive hypoth-
esis to form terms u1ρ1, . . . , unρn and collect these to form our goal,
M = uρ = f (u1, . . . , un)ρ1 · · · ρn.

Lemma 4. Given a rewrite term u typed Γ ` u : B and a substitution
ρ : Γ having ρ ∈ redΓ where the roots of the mapped elements of ρ are not
function symbols, we have uρ ∈ redB.

Proof. By induction on maxred u + maxred ρ. The value maxred u is
well-defined because the system R is strongly-normalizing, and so
is maxred ρ because the terms of ρ are reducible. Since uρ has base
type, we need only show that it strongly normalizes. Since the roots
of the terms in ρ are not function symbols, and ρ has no applica-
tion nodes, each reduction on uρ is either within ρ or has the form
uρ vρ. If the reduction is within ρ then we have reduced maxred ρ

and the goal follows by the IH. If the reduction is uρ vρ then we
have reduced maxred u and the goal follows by the IH.

Theorem 1. For every term M typed as Γ ` M : T and substitution σ : Γ
with σ ∈ redΓ, we have Mσ ∈ redT .

simply adding lambda won’t make your rewrites diverge 5

Proof. By strong induction on the structure of M. (The strong induc-
tion principle allows us to derive the property for a term from the
assumption that all of its subterms have the property.)

• Case x.

This variable must appear in the context and is mapped by σ,
hence its reducibility is immediate from hypotheses.

• Case LM : T.

By IH, Lσ ∈ redS→T and Mσ ∈ redS. The definition of redS→T gives
us LσMσ = (LM)σ ∈ redT .

• Case λx.N : S→ T.

We must show that ((λx.N)σ)M ∈ redT for each M ∈ redS. We
show this by induction on maxred (Nσ) + maxred M. (We can
assume safely that σ does not substitute x for if it does it has no
effect and we can work with the substitution where it is elided.)

Consider all the reductions of ((λx.N)σ)M. We have the β-reduction
((λx.N)σ)M −→β Nσ[M/x]. This reduct is in redT by the IH, not-
ing that σ · [M/x] is a closing, reducible subsitution.

All other reductions are within N or within M, and preserve re-
ducibility of those terms (by Lemma 1). That ((λx.N)σ)M in re-
ducible at T then follows from the (inner) IH.

Since ((λx.N)σ)M is an application, Lemma 2 lets us retract the
property of reducibility from that of its set of reducts; hence the
term itself is reducible.

This satisfies the deifinition of redS→T so now (λx.N)σ is also
reducible.

• case f (~M).

The term f (~M)σ can be decomposed as uρ for some rewrite term
u and substitution ρ : Γ′ having ρ ∈ redΓ′ with the terms of ρ

having no function symbols at their roots. Now the terms of ρ are
all reducible by virtue of being subterms of the ~M terms, which
are all base type. So Lemma 4 applies and uρ is reducible.

Since all closed terms in the language are reducible, they are strongly
normalizing, and so too must be their open cousins.

Conclusions & Next steps

We’ve seen that first-order term-rewriting systems can be extended
with functional abstraction and its counterpart, application, without

simply adding lambda won’t make your rewrites diverge 6

disturbing the strong normalization of the combined system, using a
very explicit and conventional set of notations.

The next steps are to extend this proof to System F and to investi-
gate how well it extends to higher-order rewrite systems.

References

[1] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, New York, 1989.

[2] Mitsuhiro Okada. Strong normalizability for the combined sys-
tem of the typed lambda calculus and an arbitrary convergent
term rewrite system. In Proceedings of the ACM SIGSAM 1989 In-
ternational Symposium on Symbolic and Algebraic Computation, pages
357–363. ACM, 1989.

	Conclusions & Next steps

